大数据安全的六大挑战_第1页
大数据安全的六大挑战_第2页
大数据安全的六大挑战_第3页
大数据安全的六大挑战_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、大数据安全的六大挑战大数据的价值为大家公认。业界通常以 4个“V”概括大数据的基本特征 一 Volume( 数据体量巨大 )、Variety( 数据类型繁多 )、Value( 价值密度低 )、 Velocity( 处理速度快 )。当你准备对大数据所带来的各种光鲜机遇大加利用的同 时,请别忘记大数据也会引入新的安全威胁,存在于大数据时代 “潘多拉魔盒 ” 中的魔鬼可能会随时出现。挑战一:大数据的巨大体量使得信息管理成本显著增加4个“ V中的第一个“ V”(Volume)描述了大数据之大,这些巨大、海量数据 的管理问题是对每一个大数据运营者的最大挑战。在网络空间,大数据是更容 易被“发现”的显著目

2、标,大数据成为网络攻击的第一演兵场所。一方面,大量 数据的集中存储增加了泄露风险,黑客的一次成功攻击能获得比以往更多的数 据量,无形中降低了黑客的进攻成本,增加了 “攻击收益 ”另;一方面,大数据意 味着海量数据的汇集,这里面蕴藏着更复杂、更敏感、价值巨大的数据,这些 数据会引来更多的潜在攻击者。在大数据的消费者方面,公司在未来几年将处理更多的内部生成的数据。 然而在许多组织中,不同的部门像财务、工程、生产、市场、 IT 等之间的信息 仍然是孤立的,各部门之间相互设防,造成信息无法共享。那些能够在不破坏 壁垒和部门现实优势的前提下更透明地沟通的公司将更具竞争优势。【解决方案】 首先要找到有安全

3、管理经验并受过大数据管理所需要技能培 训的人员,尤其是在今天人力成本和培训成本不断上升的节奏中,这一定足以 让许多 CEO 肝颤,但这些针对大数据管理人员的巨额教育和培训成本,是一 种非常必要的开销。与此同时,在流程的设计上,一定要将数据分散存储,任何一个存储单元 被“黑客”攻破,都不可能拿到全集,同时对于不同安全域要进行准确的评估, 像关键信息索引的保护一定要加强, “好钢用在刀刃上 ”,作为数据保全,能够 应对部分设施的灾难性损毁。挑战二:大数据的繁多类型使得信息有效性验证工作大大增加4个“ V”的第二个“ V (Variety描述了数据类型之多,大数据时代,由于不再拘泥于特定的数据收集模

4、式,使得数据来自于多维空间,各种非结构化的 数据与结构化的数据混杂在一起。未来面临的挑战将会是从数据中提取需要的数据,很多组织将不得不接受 的现实是,太多无用的信息造成的信息不足或信息不匹配。我们可以考虑这样 的逻辑:依托于大数据进行算法处理得出预测,但是如果这些收集上来的数据 本身有问题又该如何呢 ?也许大数据的数据规模可以使得我们无视一些偶然非人 为的错误,但是如果有个敌手故意放出干扰数据呢 ?现在非常需要研究相关的算 法来确保数据来源的有效性,尤其是比较强调数据有效性的大数据领域。正是因为这个原因,对于正在收集和储存大量客户数据的公司来说,最显 而易见的威胁就是在过去的几年里,存放于企业

5、数据库中数以 TB 计,不断增 加的客户数据是否真实可靠,依然有效。众所周知,海量数据本身就蕴藏着价值,但是如何将有用的数据与没有价 值的数据进行区分看起来是一个棘手的问题,甚至引发越来越多的安全问题。【解决方案】 尝试尽可能使数据类型具体化,增加对数据更细粒度的了 解,使数据本身更加细化,缩小数据的聚焦范围,定义数据的相关参数,数据 的筛选要做得更加精致。与此同时,进一步健全特征库,加强数据的交叉验 证,通过逻辑冲突去伪存真。挑战三:大数据的低密度价值分布使得安全防御边界有所扩展4个“ V”的第三个“ V” (Value描述了大数据单位数据的低价值。这种广 种薄收似的价值量度,使得信息效能被

6、摊薄了,大数据的安全预防与攻击事件 的分析过程更加复杂,相当于安全管理范围被放大了。大数据时代的安全与传统信息安全相比,变得更加复杂,具体体现在三个 方面:一方面,大量的数据汇集,包括大量的企业运营数据、客户信息、个人 的隐私和各种行为的细节记录,这些数据的集”存储增加了数据泄露风险;另一方面,因为一些敏感数据的所有权和使用权并没有被明确界定,很多基于大数 据的分析都未考虑到其”涉及的个体隐私问题 ;再一方面,大数据对数据完整 性、可用性和秘密性带来挑战,在防止数据丢失、被盗取、被滥用和被破坏上 存在一定的技术难度,传统的安全工具不再像以前那么有用。【解决方案】 确立有限管理边界,依据保护要求

7、,加强重点保护,构建一 体化的数据安全管理体系,遵循网络防护和数据自主预防并重的原则,并不是 实施了全面的网络安全护理就能彻底解决大数据的安全问题,数据不丢失只是 传统的边界网络安全的一个必要补充,我们还需要对大数据安全管理的盲区进 行监控,只有将二者结合在一起,才是一个全面的一体化安全管理的解决方案挑战四:大数据的快速处理要求使得独立决策的比例显著降低“个“ 中最后一个“ V (Velocity决定了利用海量数据快速得出有用信息 的属性。大数据时代,对事物因果关系的关注,转变为对事物相关关系的关注。如 果大数据系统只是一种辅助决策系统,这还不是最可怕的。事实上,今天大数 据分析日益成为一项重

8、要的业务决策流程,越来越多的决策结果来自于大数据 的分析建议,对于领导者最艰难的事情之一,是让我的逻辑思考来做决定,还 是由机器的数据分析做决定,可怕的是,今天看来,机器往往是正确的,这不 得不让我们产生依赖。试想一下,如果收集的数据已经被修正过,或是系统逻 辑已经被控制了呢 !但是面对海量的数据收集、存储、管理、分析和共享,传统 意义上的对错分析和奇偶较验已失去作用。【解决方案】 在依靠大数据进行分析、决策的同时,还应辅助其他的传统 决策支持系统,尽可能明智地使用数据所告诉我们的结果,让大数据为我们所 用。但绝对不要片面地依赖于大数据系统。挑战五:大数据独特的导入方式使得攻防双方地位的不对等

9、性大大降低 在大数据时代,数据加工和存储链条上的时空先后顺序已被模糊,可扩展 的数据联系使得隐私的保护更加困难。过去传统的安全防护工作,是先扎好篱 笆、筑好墙,等待 “黑客的攻击,我们虽然不知道下一个 “黑客 是谁,但我们一 定知道,它是通过寻求新的漏洞,从前面逐层进入。守方在明处,但相比攻方 有明显的压倒性优势。而在大数据时代,任何人都可以是信息的提供者和维护 者,这种由先天的结构性导入设计所带来的变化,你很难知道 “它从哪里进来, “哪里”才是前沿。这种变化,使得攻、防双方的力量对比的不对等性大大 下降。同时,由于这种不对等性的降低,在我们用数据挖掘和数据分析等大数据 技术获取有价值信息的

10、同时, “黑客”也可以利用这些大数据技术发起新的攻 击。 “黑客”会最大限度地收集更多有用信息,比如社交网络、邮件、微博、电 子商务、电话和家庭住址等信息,大数据分析使 “黑客 ”的攻击更加精准。此 外, “黑客”可能会同时控制上百万台傀儡机,利用大数据发起僵尸网络攻击。【解决方案】 面对大数据所带来新的安全问题,有针对性地更新安全防护 手段,增加新型防护手段,混合生产数据和经营数据,多种业务流并行,增加 特征标识建设内容,增强对数据资源的管理和控制。挑战六:大数据网络的相对开放性使得安全加固策略的复杂性有所降低在大数据环境下,数据的使用者同时也是数据的创造者和供给者,数据间 的联系是可持续扩

11、展的,数据集是可以无限延伸的,上述原因就决定了关于大 数据的应用策略要有新的变化,并要求大数据网络更加开放。大数据要对复杂 多样的数据存储内容做出快速处理,这就要求很多时候,安全管理的敏感度和 复杂度不能定得太高。此外,大数据强调广泛的参与性,这将倒逼系统管理者 调低许多策略的安全级别。当然,大数据的大小也影响到安全控制措施能否正确地执行,升级速度无 法跟上数据量非线性增长的步伐,就会暴露大数据安全防护的漏洞。【解决方案】 使用更加开放的分布式部署方式,采用更加灵活、更易于扩 充的信息基础设施,基于威胁特征建立实时匹配检测,基于统一的时间源消除 高级可持续攻击 (APT) 的可能性,精确控制大数据

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论