全国初中数学联合竞赛(初三年级组)试题参考答案及_第1页
全国初中数学联合竞赛(初三年级组)试题参考答案及_第2页
全国初中数学联合竞赛(初三年级组)试题参考答案及_第3页
全国初中数学联合竞赛(初三年级组)试题参考答案及_第4页
全国初中数学联合竞赛(初三年级组)试题参考答案及_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档2014年全国初中数学联合竞赛(初三年级组)试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题:(本题满分42分,每小题7分)1已知为整数,且满足,则的可能的值有( )a. 1个 b. 2个 c. 3个 d. 4个【答】 c.由已知等式得,显然均不为0,所以0或.若,则.又为整数,可求得或所以或.因此,的可能的值有3个.2已知非负实数满足,则的最大值为 ( )a b

2、c d【答】 a.,易知:当,时,取得最大值.3在中,为的中点,于,交于,已知,则 ( )a b c d【答】 b.因为,所以四点共圆,所以,又,所以,所以.2014年全国初中数学联合竞赛试题参考答案及评分标准 第1页(共5页)又易知,所以,从而可得.46张不同的卡片上分别写有数字2,2,4,4,6,6,从中取出3张,则这3张卡片上所写的数字可以作为三角形的三边长的概率是 ( )a b c d【答】 b.若取出的3张卡片上的数字互不相同,有2228种取法;若取出的3张卡片上的数字有相同的,有3412种取法.所以,从6张不同的卡片中取出3张,共有81220种取法.要使得三个数字可以构成三角形的三

3、边长,只可能是:(2,4,4),(4,4,6),(2,6,6),(4,6,6),由于不同的卡片上所写数字有重复,所以,取出的3张卡片上所写的数字可以作为三角形的三边长的情况共有428种.因此,所求概率为.5设表示不超过实数的最大整数,令.已知实数满足,则 ( )a b c d1【答】 d.设,则,所以,因式分解得,所以.由解得,显然,所以1.6在中,在上,在上,使得为等腰直角三角形, ,则的长为 ( )ab c d【答】 a.过作于,易知,.设,则,故,即.又,故可得.故.二、填空题:(本题满分28分,每小题7分)1已知实数满足,则_【答】 0.由题意知,所以2014年全国初中数学联合竞赛试题

4、参考答案及评分标准 第2页(共5页)整理得,所以0.2使得不等式对唯一的整数成立的最大正整数为 【答】144.由条件得,由的唯一性,得且,所以,所以.当时,由可得,可取唯一整数值127.故满足条件的正整数的最大值为144.3已知为等腰内一点,为的中点,与交于点,如果点为的内心,则 【答】.由题意可得,而,所以,从而可得.又,所以,从而.所以, ,所以.4已知正整数满足:,则 【答】36.设的最大公约数为,均为正整数且,则,所以,从而,设(为正整数),则有,而,所以均为完全平方数,设,则,均为正整数,且,.又,故,即.注意到,所以或.若,则,验算可知只有满足等式,此时,不符合题意,故舍去.若,则

5、,验算可知只有满足等式,此时,符合题意.因此,所求的.2014年全国初中数学联合竞赛试题参考答案及评分标准 第3页(共5页)第二试 (a)一、(本题满分20分)设实数满足,求的值解 由已知条件可得,.设,则有, 5分联立解得或. 10分若,即,则是一元二次方程的两根,但这个方程的判别式,没有实数根; 15分若,即,则是一元二次方程的两根,这个方程的判别式,它有实数根.所以. 20分二(本题满分25分)如图,在平行四边形中,为对角线上一点,且满足, 的延长线与的外接圆交于点. 证明:证明 由是平行四边形及已知条件知.5分又a、b、f、 d四点共圆,所以,所以, 15分所以. 20分又,所以,故. 25分三(本题满分25分)设是整数,如果存在整数满足,则称具有性质.在1,5,2013,2014这四个数中,哪些数具有性质,哪些数不具有性质?并说明理由.解 取,可得,所以1具有性质.取,可得,所以5具有性质.5分为了一般地判断哪些数具有性质,记,则2014年全国初中数学联合竞赛试题参考答案及评分标准 第4页(共5页).即 10分不妨设,如果,即,则有;如果,即,则有;如果,即,则有;由此可知,形如或或(为整数)的数都具有性质.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论