油桶数学建模模型论文(数学建模论文国家一等奖)_第1页
油桶数学建模模型论文(数学建模论文国家一等奖)_第2页
油桶数学建模模型论文(数学建模论文国家一等奖)_第3页
油桶数学建模模型论文(数学建模论文国家一等奖)_第4页
油桶数学建模模型论文(数学建模论文国家一等奖)_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高教社杯全国大学生数学建模竞赛承 诺 书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从a/b/c/d中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话)

2、: 所属学校(请填写完整的全名): 参赛队员 (打印并签名) :1. 2. 3. 指导教师或指导教师组负责人 (打印并签名): 日期: 年 月 日赛区评阅编号(由赛区组委会评阅前进行编号):高教社杯全国大学生数学建模竞赛编 号 专 用 页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):油桶的变位识别与罐容器的标定 摘要:本文主要是通过积分方程和高度转化方程,建立在无变位,横向倾斜以及纵向倾斜在为4.1度的基本模型,出罐体变位后油位高度对于问题一:我们开始使用微积

3、分,对灌容器的无变位和变位的求出它们油量的体积。首先求出无变位情况下求出它的高度和油量,然而在纵向倾斜,它有五种情况,分别对它五种积分,在五段分段函数,由于函数比较复杂,不便观察它们的变化,再求出的数据,次之使用使用matlab仿真出数据。再模拟出曲线。很明显能看到倾斜和无变位的变化。能较快的满意的答案。 最后得到出油桶的变化识别与灌容器的标定。 对于问题二:在于问题二中我们使用重积分的和高度转化方程基础下求解截住图形的面积,借助于matlab工具绘制出模拟的图像,并且建立油位的高度与储油器之间的模型。所绘出在结果的图像在误差最大在一定范围上,之间的角度在010度之间,之间的角度在附件二的通过

4、集优值求出。分别用之间去检查者两百个油面的高度以及两百个的储油量的数据下的关系去精优最佳值。最后得出罐体变位后油位高度间隔为10cm的罐容表标定值。 关键词:微积分方程, 高度转化方程,matlab,曲线拟合,体积标定,问题重述:通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容

5、表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为a=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。(2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学

6、模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度a和横向偏转角度b )之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。问题分析:油灌由于地基发生变化,显然油桶的形状发生变化。积分求解出纵向倾斜,和横向倾斜以及无变位的油量,分析它们之间的影响。对于问题一:在问题一首先分了纵向倾斜为4.1度,无变位倾斜两种情况下的求解,在无变位的倾斜条件下,主要是一个椭圆的方程求解,当然需要建立一个积分方程求出它们的面积

7、,再乘以他的宽度求出它的体积。分析出它们的变化,模拟出曲线。讨论灌容器的油量的之间在这种情况下变化。对于问题二,一般的加油站下的基本是这种类型的,意义不同的事如何让求出在两个倾斜角度求出储油量的体积。问题在加油站是很大的意义。问题二同样是属于积分问题,解决此类问题需要用多元面积分和体积积分。对已知的数据在附件二得出。进一步了解油面的高度和储油量之间的关系,首先对的预测和精优。在附件二中先取值,再次去优化。在油桶的体积分为三个部分,积分求和,求出在10cm的灌容标的定值。并在此基础上进行误差分析和曲线拟合。进一步完善体积的模型。数学模型的假设与符号说明;模型假设: 1) 在恒压,恒温,等不变条件

8、下测量。2) 油桶内壁无凹凸不齐,且内壁光滑。3) 油的密度均匀,纯净无其它的液体。4) 输出油管和输进油管在输量过程中不会衰落出油量。5) 在测量时忽略误差的产生。6) 忽略蒸发的液体以及油管留下的液体。符号说明: 椭圆的半长轴长 椭圆的半短轴长 储油罐的总长 油位探针到油罐底部左侧的距离 储油罐的总体积d 为油桶的宽度储油罐的纵向倾斜角度 储油罐的横向偏转角度 油位高度 球冠体的半径圆柱体的底面半径数学模型1.1 模型一;模型一是在无变位情况下产生,在油量输进和输出得到已知的数据,求出无变位的油面的高度跟油量的体积。油桶的形状是一个椭圆柱体所在求出的体积时需要v=s(x)*d,所以建立模型

9、如下:4.1 小椭圆储油罐无变位时的模型由于此时的椭圆无变位,考虑先对二维椭圆进行积分。为方便表示油位高度,建立如图所示的坐标系,椭圆的半长轴长为,半短轴长为,则椭圆方程为 v=s(x)*d s(x)=2-bh-ba1-y2b2dysx=absin-1(h-bb+12sin2sin-1h-bb+2 v=ls(x)v=labsin-1(h-bb+12sin2sin-1h-bb+24.2 纵向倾斜的油桶模型我们将倾斜的油桶根据油面的高度分成5个阶段进行积分。v1=-0.40absin-1(-xtan-bb)+12-xtan-b2b2+(xtan)2-2bxtan+2 v2=(-0.4htan-b-

10、xtan-b+h2a1-y2b2)dydx (0habs(mv-detav) minv=abs(mv-detav); aa=a;bb=b; end endendaa bb minv%最小二乘拟合syms hb a bs=0;vh=zeros(1,10);aa=0;bb=0;mins=100000;v1=309.66 249.73 186.43 231.42 297.79 109.19 162.87 328.5 166.13 237.66 /1000;h1=11.34 9.20 6.84 8.40 10.87 3.99 5.95 11.92 6.03 8.59 /1000;vh1=-1/3000

11、000000000000*(2*(22500000000- 9375-2137*cos(b)+37500*tan(a)(1/2);(表达式太长,部分省略)for a=linspace(0,0.1745,10) for b=linspace(0,0.1745,10) vh(1)=eval(vh1) vh(2)=eval(vh2); vh(3)=eval(vh3); vh(4)=eval(vh4); vh(5)=eval(vh5); vh(6)=eval(vh6); vh(7)=eval(vh7); vh(8)=eval(vh8); vh(9)=eval(vh9); vh(10)=eval(vh1

12、0); for i=1:10 s=s+(v1(i)-vh(i)2 end if smins mins=s; aa=a; bb=b; end endendaa,bb%综合考虑纵向清晰和横向偏转syms x y %区域1l=8;r=1.5;r0=1.625;h=1;l=2;a=0.0377;b=0.0785;vh1=2*int(y-r+r*(1-cos(b)+l*tan(a)/tan(a)*(r2-y2)0.5,r-r*(1-cos(b)-l*tan(a),r)r=(r02-(x-r)2)0.5vh2=int(r2*acos(r0-h)/r)-(r2-(r0-h)2)0.5)*(r0-h),x,0

13、,r*(1-cos(b)+l*tan(a)vh=vh1+vh2;eval(vh) syms x y %区域2l=8;r=1.5;r0=1.625;h=1;l=2;a=0.0377;b=0.0785;hb2max=(l-l)*tan(a)-r*(1-cos(b)/cos(b);hb=0.2224;h=r-(r-hb)*cos(b);vh1=2*int(y-r+h+l*tan(a)/tan(a)*(r2-y2)0.5,y,r-h-l*tan(a),r);r=(r02-(x-r)2)0.5;vh2=int(r2*acos(r0-h)/r)-(r2-(r0-h)2)0.5)*(r0-h),x,0,h+

14、l*tan(a);vh=vh1+vh2;eval(vh) syms x y %区域3l=8;r=1.5;r0=1.625;h=1;l=2;a=0.0377;b=0.0785;hb=2.93;h=r-(r-hb)*cos(b);vh1=2*l*int(r2-(y-r)2)0.5,y,0,h);vh11=2*int(-y+h+l*tan(a)/tan(a)*(r2-(y-r)2)0.5,y,h,h+l*tan(a);vh12=2*int(l-(h-y+l*tan(a)/tan(a)*(r2-(y-r)2)0.5,y,h-(l-l)*tan(a),h);r=(r02-(y-r)2)0.5;vh21=

15、int(r2*acos(r0-h)/r)-(r2-(r0-h)2)0.5)*(r0-h),y,0,h+l*tan(a);vh22=int(r2*acos(r0-h)/r)-(r2-(r0-h)2)0.5)*(r0-h),y,0,h-(l-l)*tan(a);vh=vh1+vh11-vh12+vh21+vh22;eval(vh) syms x y %区域4l=8;r=1.5;r0=1.625;h=1;l=2;a=4*pi/180;hb=3;hb4min=(r*(1+cos(b)-l*tan(a)/cos(b)bb4max=2*rh=r-(r-hb)*cos(b);v1=l*pi*r2;vh1=2*int(y+r-h+(l-l)*tan(a)/tan(a)*(r2-y2)0.5,y,h-r-(l-l)*tan(a),r);r=(r02-(y-r)2)0.5;vh21=int(r2*acos(r0-h)/r)-(r2-(r0-h)2)0.5)*(r0-h),y,0,h-(l-l)*tan(a);vh22=pi*h2*(r0-h/3);vh=v1-vh1+vh21+vh22;eval(vh)syms x y %区域5l=8;r=1.5;r

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论