版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、可变气门正时(VVTVVT) 近几十年来,基于提高汽车发动机动力性、经济性和降低排污的要求,许多国家和发动机厂商、科研机构投入了大量的人力、物力进行新技术的研究与开发。这些新技术和新方法,有的已在内燃机上得到应用,有些正处于发展和完善阶段,有可能成为未来内燃机技术的发展方向。 发动机可变气门正时技术是近些年来被逐渐应用于现代轿车上的新技术中的一种,发动机采用可变气门正时技术可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。 发动机可变气门正时技术的英文缩写就是“VVT”(Variable Valve Timing),其实这种称谓是“可变气门正时”的通称,而在汽车领域被普
2、遍应用的可变气门正时技术又因为各个厂商的自行创新或者叫法不同而多种多样。可变气门正时技术(VVTVVT)工作原理:根据发动机的运行情况,调整进气(排气)的量,和气门开合时间,角度。使进入的空气量达到最佳,提高燃烧效率。 该系统通过配备的控制及执行系统,对发动机凸轮的相位进行调节,从而使得气门开启、关闭的时间随发动机转速的变化而变化,以提高充气效率,增加发动机功率。优点:是省油,功升比大。缺点:是中段转速扭矩不足。可变正时技术的发展我们通俗点来说,四冲程汽油机分为吸气、压缩、做功、排气这四步流程,由于发动机工作时的转速很高,四冲程发动机的一个工作行程仅需千分之几秒,这么短促的时间往往会引起发动机
3、进气不足,排气不净,造成功率下降。因此,就需要利用气流的进气惯性,气门要早开晚关,以满足进气充足,排气干净的要求。发动机气门是由曲轴通过凸轮轴带动的,气门的配气正时则是由凸轮决定的。对于没有可变气门正时技术的普通发动机而言,进排气们开闭时间都是固定的,但是这种固定不变的气门正时却很难顾及到发动机在不同转速工况时的工作需要。所以,为了让发动机根据不同的负载情况能够自由调整“呼吸”,气门正时的可变性就发挥出了应有的作用,这样以来就会提升发动机的动力表现,使燃烧更有效率。在控制进气与排气的工作中,必然会出现一个进气门和排气门同时开启的时刻,配气相位上称为“重叠阶段”。在低转下表现出色的设计在高转下就
4、未必有效,而重叠较多的发动机设计则在低转时的扭矩输出方面表现欠佳,重叠少的发动机则是在牺牲了动力性能的前提下换来了发动机的平顺性和高扭矩。因此,就需要在设计时,充分考虑到凸轮形状和正时的设计,从而优化发动机的表现。因此为了解决这个问题,就要求这个“重叠阶段”的夹角大小可以根据转速和负载的不同进行调节,高低转速下都可以获得理想的进气量从而提升发动机燃烧效率,这就是可变气门正时技术开发的初衷。可变正时技术的发展在相当长的一段时间内,发动机的设计一直比较中庸,没有任何一款机器能够既保证高转的有效性,又保证低转的大扭矩。不过,在上世纪70年代初,出于减排目的而开发的可变凸轮正时技术却给了发动机设计界一
5、个重要的启示。在重叠阶段应用气门正时调节可以通过废气来降低温度,从而减少NOx(NOx气体是一种危害大且较难处理的大气污染物)的排放。因此,在上个世纪七十年代,废气外循环(EGR)技术在减少NOx方面的效果已经被广泛接受,但是,如果能够形成内循环的话,发动机的设计将更为简单。所以,后来人们应用了更长的重叠时间,从而使部分废气能够在进气冲程时进入气缸。不过,虽然这个问题得到了解决,但是,怠速和低速的工作效果又受到了影响,并使发动机无法在起步阶段通过废气高温来激活催化剂,所以,人们开始使用了可变凸轮正时技术。可变正时技术的应用可变正时技术的应用最先将气门正时技术应用在量产车中的公司是意大利的阿尔法
6、罗密欧。作为第一个开发出了双凸轮轴量产发动机的厂商,他们用两根不同的凸轮轴来控制进气气门和排气气门的开闭时间,从而达到了比单凸轮轴更为有效的效果。这家车厂一名叫Giampaolo Garcea的工程师发明了一个装置,就是在进气凸轮轴的主动链轮里加上一个设备,并由螺旋键槽将其与凸轮相连接,来改变气门的正时效果。最先配备这种系统的车型就是阿尔法罗密欧Spider。当这款车在欧洲销售的时候,该公司进一步增大了重叠角度以获得更好的燃油经济性。后来在配备了Bosch公司的Motronic发动机管理系统之后,发动机的正时技术便越来越依赖于ECU的作用了。紧随阿尔法罗密欧的就是日产和本田。这两家日本公司分别
7、在1987年和1989年,研发出了他们自己的双顶置凸轮轴系统,也就是后来所说的NVCS和VTEC系统。在1992年,宝马公司也开发出了自己的Vanos系统,最先被应用在了进气凸轮轴上,后来,又于1998年,推出了他们的双Vanos系统。目前丰田的VVT-i;三菱的MIVEC; 奥迪的AVS;菲亚特的Multiair等也逐渐开始使用。D-VVTD-VVT,双VVTVVT技术市面上的大部分气门正时系统都可以实现进气门气门正时在一定范围内无级可调,而少数发动机还在排气门也配备了VVT系统,从而在进排气门都实现气门正时无级可调(就是D-VVT,双VVT技术),进一步优化了燃烧效率。传统的VVT技术通过
8、合理的分配气门开启的时间确实可以有效提高发动机效率和经济性,但是对发动机性能的提升却作用不大,下面将要介绍的可变气门升程技术则可以弥补这个不足。我们都知道,发动机的实质动力表现是取决与单位时间内汽缸的进气量的,前面说过,气门正时代表了气门开启的时间,而气门升程则代表了气门开启的大小,从原理上看,可变气门正时技术也是通过改变进气量来改善动力表现的,但是气门正时只能增加或者缩小气门开启时间,并不能有效改善汽缸内单位时间的进气量,因此对于发动机动力性的帮助并不大。欧宝雅特欧宝雅特D-VVT发动机发动机凯迪拉克凯迪拉克3.0升升SIDI直喷发动机直喷发动机D-VVT电子可变双气门正时电子可变双气门正时
9、总结(发展趋势:可变气门正时升程) 面对这一系列各式各样的VVT技术,新的疑问也就接踵而至了:哪种技术最好呢?如果非要做个比较的话,我们可以得出这样的结论:两段式三段式的非连续可调不如CVVT,单独改变进气正时或者排气正时的VVT技术比起进排气一起调节的DVVT还是稍逊一筹;而气门升程与气门正时同时可调(i-VTEC)使得发动机的低负荷经济性和高负荷的动力性非常令人满意,但是动力输出的平顺性打了折扣。丰田的VVT-iVVT-iVVTi.系统是丰田公司的智能可变气门正时系统的英文缩写,最新款的丰田轿车的发动机已普遍安装了VVTi系统。丰田的VVTi系统可连续调节气门正时,但不能调节气门升程。工作
10、原理是:当发动机由低速向高速转换时,电子计算机就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,这样,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。VVTi是一种控制进气凸轮轴气门正时的装置,它通过调整凸轮轴转角配气正时进行优化,从而提高发动机在所有转速范围内的动力性、燃油经济性,降低尾气的排放。VVTi系统由传感器、ECU和凸轮轴液压控制阀、控制器等部分组成。ECU储存了最佳气门正时参数值,曲轴位置传感器、进气歧管空气压力传感器、节气门位置传感器、水温传感器和凸轮轴位置传感器等反馈信息汇集到
11、ECU并与预定参数值进行对比计算,计算出修正参数并发出指令到控制凸轮轴正时液压控制阀,控制阀根据ECU指令控制机油槽阀的位置,也就是改变液压流量,把提前、滞后、保持不变等信号指令选择输送至VVTi控制器的不同油道上。丰田VVT-iVVT-iVVTi系统视控制器的安装部位不同而分成两种,一种是安装在排气凸轮轴上的,称为叶片式VVTi,丰田PREVIA(大霸王)安装此款。另一种是安装在进气凸轮轴上的,称为螺旋槽式VVTi,丰田凌志400、430等高级轿车安装此款。两者构造有些不一样,但作用相同。 叶片式VVTi控制器由驱动进气凸轮轴的管壳和与排气凸轮轴相耦合的叶轮组成,来自提前或滞后侧油道的油压传
12、递到排气凸轮轴上,导致VVTi控制器管壳旋转以带动进气凸轮轴,连续改变进气正时。当油压施加在提前侧油腔转动壳体时,沿提前方向转动进气凸轮轴;当油压施加在滞后侧油腔转动壳体时,沿滞后方向转动进气凸轮轴;当发动机停止时,凸轮轴液压控制阀则处于最大的滞后状态。螺旋槽式VVTi控制器包括正时皮带驱动的齿轮、与进气凸轮轴刚性连接的内齿轮,以及一个位于内齿轮与外齿轮之间的可移动活塞,活塞表面有螺旋形花键,活塞沿轴向移动,会改变内、外齿轮的相位,从而产生气门配气相位的连续改变。当机油压力施加在活塞的左侧,迫使活塞右移,由于活塞上的螺旋形花键的作用,进气凸轮轴会相对于凸轮轴正时皮带轮提前某个角度。当机油压力施
13、加在活塞的石侧,迫使活塞左移,就会使进气凸轮轴延迟某个角度。当得到理想的配气正时,凸轮轴正时液压控制阀就会关闭油道使活塞两侧压力平衡,活塞停止移动。凸轮轴凸轮轴及节气门装配图凸轮轴返回可变正时系统的发动机采用可变气门正时系统的发动采用可变气门正时系统的发动机机采用可变气门正时系统的采用可变气门正时系统的发动机局部剖面图发动机局部剖面图可变正时系统的发动机可变气门正时系统可变气门正时系统可变气门正时系统结构图 返回EGREGR发动机应用废气外循环(EGR)技术的发动机返回阿尔法罗密欧SpiderSpiderHOME本田的i-VTECi-VTEC回宝马的Double-VANOSDouble-VAN
14、OSDouble-VANOS:双凸轮轴可变气门正时系统。Double-VANOS是由BMW开发的双凸轮轴可变气门正时系统,这是宝马技术发展领域中的又一项成就:Double-VANOS双凸轮轴可变气门正时系统根据油门踏板和发动机转速控制扭矩曲线,进气和排气气门正时则根据凸轮轴上可控制的角度按照发动机的运行条件进行无级的精准调节。 在低发动机转速时,移动凸轮轴的位置,使气门延时打开,提高怠速质量并改进功率输出的平稳性。在发动机转速增加时,气门提前打开:增强扭矩,降低油耗并减少排放。高发动机转速时,气门重新又延时打开,为全额功率输出提供条件。 Double-VANOS双凸轮轴可变气门正时系统还控制循
15、环返回进气歧管的废气量以增强燃油经济性。系统在发动机预热阶段使用一套专用参数以帮助三元催化转换器更快达到理想工作温度并降低排放。整个过程由车辆的汽油发动机电子控制系统(DME)控制。回三菱的MIVECMIVEC MIVEC全称为“Mitsubishi Innovative Valve timing Electronic Control system”,中文解释为三菱智能可变气门正时与升程管理系统。装备MIVEC系统的发动机与普通发动机一样采用每缸四气门,两进两排的设计,但不同的是它可以控制每缸两个进气门的开闭大小。如在低速行驶时,MIVEC系统发出指令此时两个进气门中的其中一个升程很小,这时基
16、本就相当于一台两气门发动机。由于只有一个进气门工作,吸入的空气不会通过汽缸中心,所以能产生较强的进气涡流,对于低速行驶,尤其是冷车怠速条件下能增大燃烧速率,使燃烧更充分从而也大大提高了经济性。在我们日常行车中,经常会遇到这种情况,比如堵车时,这时装备了MIVEC系统的发动机比普通发动机能节省不少的燃料。 而另一种情况就是当我们需要加速或高转速行驶时,这时MIVEC系统会让两个进气门同时以同样的最大升程开启,这时的进气效率能显著提高,令发动机在高转速运转时能有充足的储备。当然MIVEC并不是只有这两种可变的工作状态,它可以根据各传感器传来的发动机工况信号来适时调整最合理的配气正时,总而言之miv
17、ec可以令发动机时刻处在最佳燃烧状态。 奥迪的AVSAVShttp:/ 这套系统中还有一个设计细节需要注意,那就是两个进气门无论是在普通凸轮还是高角度凸轮下的相位和升程是有差别的,也就是说两个进气门开启和关闭的时间以及升程并不相同。这种不对称的进气设计是为了让空气在流经两个进气门后,同时配合特殊造型的燃烧室和活塞头,可以令混合气在气缸内实现翻转和紊流,进一步优化混合气的状态。 奥迪AVS可变气门升程系统在发动机700至4000转之间工作,当发动机处于中间转速区域进行定速巡航时,AVS系统可以为车辆提供很好的节油效果。菲亚特的MultiairMultiair菲亚特的Multiair电控液压进气系
18、统相比宝马的Valvetronic和英菲尼迪的VVEL的结构来说比较复杂,而且复杂的配气机构也会在一定程度上增加制造成本。然而菲亚特的Multiair电控液压进气系统却采用了一种相对独特的手段实现了气门升程的无级调节,在技术上可谓另辟蹊径。 Multiair最大的特点就是开创性的使用了电控液压控制系统来驱动气门的正时和升程,虽然发动机为每缸4气门的结构,但是却取消了进气门一侧凸轮轴,排气门侧的凸轮轴通过液压机构来驱动进气门。Multiair系统的工作原理要直接得多,而且结构相对简单。进气门上方设计有活塞和液压腔,液压腔一端与电磁阀相连,电磁阀则通过ECU信号,根据工况的不同适时调节流向液压腔内的油量。由凸轮轴驱动的活塞通过推动液压腔内的油液,控制气门的开启。系统只需要控制液压腔内的油量的多少即可以完成对气门升程的无级可调。简单的结构不仅可以减小整个配气机构的惯性,而且在高速运转时,能量的损失也更小,而且电控加液压的配合方式还让Multiair系统拥有极快的响应速度,因此可以实现在一个冲程内多次开启气门的模式,使得在怠速和低负荷工况下拥有更高的燃烧效率。然而Multiair最大的优势在于成本,由于配气机构相对简单,整套Multiair系统也不需要太高的成本,因此这项技术可以更好的向中低端车型覆盖
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 苏教版四年级下册数学第三单元 三位数乘两位数 测试卷完整参考答案
- 框架性合作协议书(10篇)
- 诚信承诺要点保证书
- 货物运输与广告合作协议
- 购房担保合同法律效力
- 购销合同印花税的税率计算器使用便捷
- 购销合同法律保护建议
- 购销合同签订中的合同协同办公
- 资管产品存款策略研究
- 超市食品保证书示例
- 电工登高作业安全操作规程
- 2023-2024人教版上学期小学英语三年级上册期末试卷
- 《国际贸易法(第四版)》
- 2024年银行考试-建设银行纪检监察条线考试近5年真题附答案
- 中金公司在线测评真题
- GB/T 44510-2024新能源汽车维修维护技术要求
- 项目资金管理统筹实施方案
- 广东开放大学2024年秋《国家安全概论(S)(本专)》形成性考核作业参考答案
- 学守则守规范小学生主题班会课件
- 部编人教版《道德与法治》六年级上册第6课《人大代表为人民》课件
- 药物常识智慧树知到答案2024年江西师范大学
评论
0/150
提交评论