下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3.5 等比数列的前n项和(一)教学目的:1掌握等比数列的前n项和公式及公式证明思路2会用等比数列的前n项和公式解决有关等比数列的一些简单问题教学重点:等比数列的前n项和公式推导教学难点:灵活应用公式解决有关问题授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教材分析:本节是对公式的教学,要充分揭示公式之间的内在联系,掌握与理解公式的来龙去脉,掌握公式的导出方法,理解公式的成立条件也就是让学生对本课要学习的新知识有一个清晰的、完整的认识、忽视公式的推导和条件,直接记忆公式的结论是降低教学要求,违背教学规律的做法教学过程:一、复习引入:首先回忆一下前两节课所学主要内容:1等比数列:如果
2、一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(q0),即:=q(q0)2.等比数列的通项公式: , 3成等比数列=q(,q0) “0”是数列成等比数列的必要非充分条件4既是等差又是等比数列的数列:非零常数列 5等比中项:G为a与b的等比中项. 即G=(a,b同号).6性质:若m+n=p+q,7判断等比数列的方法:定义法,中项法,通项公式法8等比数列的增减性:当q1, 0或0q1, 1, 0,或0q0时, 是递减数列;当q=1时, 是常数列;当q0时, 是摆动数列;二、讲授新课一:求和公式:在(1)式的两边同时乘以q得:将上面两式相减,即(1)-(2)得:接下来对q进行分类讨论另外:三、例题讲解:例1:求等比数列 的前8项和. 例2:已知等比数列中, ,求首项。 . 解:此式为首项为2,公比为4的等比数 列的前n+2项的和.课堂练习:提示:对q进行分类讨论综上:四、课后小结:本节课重点掌握等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中班语言活动不浪费水
- 新生儿过敏知识培训
- 江西省宜春市丰城市第九中学2024-2025学年八年级上学期第一次段考化学试卷(含解析)
- 甘肃省会宁县第四中学2024-2025学年高三上学期第一次月考化学试卷
- 全球无人机探测与防控系统市场运营现状及发展策略研究报告2024-2030年
- 初中七年级生物上学期期中考前测试卷(人教版)含答案解析
- T-YNRZ 019-2024 珠芽黄魔芋组培种苗生产技术规程
- 内蒙古自治区通辽市科尔沁左翼中旗联盟校2024-2025学年六年级上学期期中考试英语试题
- 【课件】Unit+3+SectionB+1a-2b+课件人教版英语七年级上册
- 高中语文11琵琶行并序锦瑟课件苏教版必修
- 初中英语英语音标教学课件
- 急性皮肤衰竭与压力性损伤鉴别
- 2024生态环境监测技术人员持证上岗考核理论试题库-上(单选题)
- JBT 10704-2023 建筑施工机械与设备 混凝土布料机 (正式版)
- DZ∕T 0283-2015 地面沉降调查与监测规范(正式版)
- 肾内科相关专业知识:肾内科测试题(题库版)
- 三年级上册科学第三单元《家庭用电》知识梳理
- 民族民间体育知到智慧树网课答案
- 项目实施方案及实施计划(2篇)
- 2024年医院见习护士聘用合同(二篇)
- 电力安全工器具预防性试验规程-修订编制说明
评论
0/150
提交评论