版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1正弦余弦定理应用举例二正弦余弦定理应用举例二测量垂直高度测量垂直高度 1 1、底部可以到达的、底部可以到达的 测量出角测量出角C C和和BCBC的长度,解直的长度,解直角三角形即可求出角三角形即可求出ABAB的长。的长。 第1页/共13页.,. 3的方法物高度设计一种测量建筑为建筑物的最高点不可到达的一个建筑物是底部例ABABAB图中给出了怎样的一个图中给出了怎样的一个几何图形?已知什么,几何图形?已知什么,求什么?求什么?想一想想一想BEAGHDC2 2、底部不能到达、底部不能到达的的 第2页/共13页)sin(sinaAChahAChAEAB)sin(sinsinsin解:选择一条
2、水平基线解:选择一条水平基线HG,使使H,G,B三点在同一条直线上。由三点在同一条直线上。由在在H,G两点用测角仪器测得两点用测角仪器测得A的的仰角分别是仰角分别是,CD=a,测角测角仪器的高是仪器的高是h.那么,在那么,在ACD中,根据正弦定理可得中,根据正弦定理可得例例3 AB是底部是底部B不可到达的一个建筑物,不可到达的一个建筑物,A为建筑物为建筑物的最高点,设计一种测量建筑物高度的最高点,设计一种测量建筑物高度AB的方法的方法第3页/共13页例例3 AB是底部是底部B不可到达的一个建筑物,不可到达的一个建筑物,A为建筑为建筑物的最高点,设计一种测量建筑物高度物的最高点,设计一种测量建筑
3、物高度AB的方法的方法分析:由于建筑物的底部分析:由于建筑物的底部B是不可到达的,所以不能是不可到达的,所以不能直接测量出建筑物的高。直接测量出建筑物的高。由解直角三角形的知识,由解直角三角形的知识,只要能测出一点只要能测出一点C到建筑物到建筑物的顶部的顶部A的距离的距离CA,并测出并测出由点由点C观察观察A的仰角,就可的仰角,就可以计算出建筑物的高。所以计算出建筑物的高。所以应该设法借助解三角形以应该设法借助解三角形的知识测出的知识测出CA的长的长。BEAGHDC第4页/共13页例例4 在山顶铁塔上在山顶铁塔上B处测得地面上处测得地面上一点一点A的俯角的俯角5440,在塔,在塔底底C处测得处
4、测得A处的俯角处的俯角501。已知铁塔。已知铁塔BC部分的高为部分的高为27.3m,求出山高,求出山高CD(精确到精确到1m)分析:根据已知条件,应该设分析:根据已知条件,应该设法计算出法计算出AB或或AC的长的长解:在解:在ABC中,中,BCA=90+, ABC=90-, BAC=-, BAD=.根根据正弦定理,据正弦定理,)90sin()sin(ABBC第5页/共13页)(177)1504054sin(4054sin150cos3 .27)sin(sincossin,mBCBADABBDABDRt得解CD=BD-BC177-27.3=150(m)答:山的高度约为答:山的高度约为150米。米
5、。)sin(cos)sin()90sin(BCBCAB所以,第6页/共13页例例5 一辆汽车在一条水平的公路上向正东行驶,到一辆汽车在一条水平的公路上向正东行驶,到A处时测得处时测得公路南侧远处一山顶公路南侧远处一山顶D在东偏南在东偏南15的方向上,行驶的方向上,行驶5km后到后到达达B处,测得此山顶在东偏南处,测得此山顶在东偏南25的方向上,仰角的方向上,仰角8,求此,求此山的高度山的高度CD.分析:要测出高分析:要测出高CD,只要只要测出高所在的直角三角形测出高所在的直角三角形的另一条直角边或斜边的的另一条直角边或斜边的长。根据已知条件,可以长。根据已知条件,可以计算出计算出BC的长。的长
6、。第7页/共13页例例5 一辆汽车在一条水平的公路上向正东行驶,到一辆汽车在一条水平的公路上向正东行驶,到A处时测得处时测得公路南侧远处一山顶公路南侧远处一山顶D在东偏南在东偏南15的方向上,行驶的方向上,行驶5km后到后到达达B处,测得此山顶在东偏南处,测得此山顶在东偏南25的方向上,仰角的方向上,仰角8,求此,求此山的高度山的高度CD.解:在解:在ABC中,中,A=15, C=25-15=10.根据正弦定理,根据正弦定理,CABABCsinsinCD=BCtanDBCBCtan81047(m)答:山的高度约为答:山的高度约为1047米。米。第8页/共13页第9页/共13页第10页/共13页
7、例例6 一艘海轮从一艘海轮从A出发,沿北偏东出发,沿北偏东75的方向航行的方向航行67.5n mile后到达海岛后到达海岛B,然后从然后从B出发,沿北偏东出发,沿北偏东32的方向航行的方向航行54.0n mile后到达海岛后到达海岛C.如果下次航行直接从如果下次航行直接从A出发到达出发到达C,此船应该此船应该沿怎样的方向航行,需要航行多少距离(角度精确到沿怎样的方向航行,需要航行多少距离(角度精确到0.1,距距离精确到离精确到0.01n mile)?解:在解:在 ABC中,中,ABC1807532137,根据余弦,根据余弦定理,定理,15.113137cos0 .545 .6720 .545 .67cos2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 印刷品购销的合同
- 内的幼儿园买卖合同有效么
- 二零二四年度钢筋订购合同2篇
- 股份合同范本
- 全新劳动合同模板
- 八年级下册语文古诗课件
- 合资购房合同合资购房合同
- 2024版加工承揽合同工作进度安排及其质量控制3篇
- 财政科技调研报告范文
- 教育类课件网站
- 2024-2030年中国数字商务行业市场发展趋势与前景展望战略分析报告
- 烟草专卖行政执法中存在的问题及对策研究
- 二手车交易定金合同范本5篇
- 《乌鲁木齐市国土空间总体规划(2021-2035年)》
- 无人机应用技术专业申报表
- 《护理学基础》《健康评估》临床见习手册
- 泸州老窖“浓香文酿杯”企业文化知识竞赛考试题库大全-中(判断题)
- 2024年湖北恩施州巴东县机关事业单位选调46人历年重点基础提升难、易点模拟试题(共500题)附带答案详解
- 大班劳动教育课教案反思总结(3篇模板)
- 医院感染风险评估记录
- 肿瘤化疗导致的中性粒细胞减少诊治中国专家共识(2023版)解读
评论
0/150
提交评论