包覆纱工程项目数据分析与挖掘(完整版)_第1页
包覆纱工程项目数据分析与挖掘(完整版)_第2页
包覆纱工程项目数据分析与挖掘(完整版)_第3页
包覆纱工程项目数据分析与挖掘(完整版)_第4页
包覆纱工程项目数据分析与挖掘(完整版)_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、泓域咨询/包覆纱工程项目数据分析与挖掘包覆纱工程项目数据分析与挖掘一、 逻辑框架法的概念及模式(一)lfa的基本概念lfa是一种概念化论述项目的方法,即用一张简单的框图来清晰地分析一个复杂项目的内涵和各种逻辑关系,以便给人们一个整体的框架概念。lfa是将几个内容相关、必须同步考虑的动态因素组合在一起,通过分析各种要素之间的逻辑关系,从设计策划到目标实现等方面来评价一项活动或工作。lfa为项目策划者和评价者提供一种分析框架,用以确定工作的范围和任务,并对项目目标和达到目标所需的手段进行逻辑关系分析。lfa的核心是项目的各种要素之间的因果关系,即“如果”提供了某种条件,“那么”就会产生某种结果。这

2、些条件包括事物内在的因素及其所需要的各种外部条件。(二)lfa的基本模式逻辑框架分析方法的结果是要形成一个逻辑框架表。由于该表能够充分体现表内包含的各项内容之间的逻辑关系,而且这种逻辑关系构成了一个矩阵式框架结构,因此,逻辑框架表又称为逻辑框架矩阵表。lfa的模式是一张4x4的矩阵。1目标层次逻辑框架表汇总了项目实施活动的全部要素,并按宏观目标、具体目标、产出成果和投入的层次归纳了投资项目的目标及其因果关系。(1)宏观目标。项目的宏观目标即宏观计划、规划、政策和方针等所指向的目标,该目标可通过几个方面的因素来实现。宏观目标一般超越了项目的范畴,是指国家、地区、部门或投资组织的整体目标。这个层次

3、目标的确定和指标的选择一般由国家或行业部门选定,一般要与国家发展目标相联系,并符合国家产业政策、行业规划等的要求。(2)具体目标。具体目标也叫直接目标,是指项目的直接效果,是项目立项的重要依据。一般应考虑项目为受益目标群体带来的效果,主要是社会和经济方面的成果和作用。这个层次的目标由项目实施机构和独立的评价机构来确定,目标的实现由项目本身的因素来确定。(3)产出。这里的“产出”是指项目“干了些什么”,即项目的建设内容或投人的产出物。一般要提供可计量的直接结果,要直截了当地指出项目所完成的实际工程(如港口、铁路、输变电设施、气井、城市服务设施等),或改善机构制度、政策法规等。在分析中应注意,在产

4、出中,项目可能会提供的一些服务和就业机会,往往不是产出而是项目的目的或目标。(4)投入和活动。该层次是指项目的实施过程及内容,主要包括资源和时间等的投入。2客观验证指标逻辑框架垂直各层次目标,应有相对应的客观且可度量的验证指标,包括数量、质量、时间及人员等,来说明层次目标的结果,验证每一个目标的实现程度,这种指标的确立应该是客观的,不能凭主观臆断,同时又是可以被验证的。3客观验证方法在逻辑框架水平逻辑层次上,对应验证指标的是验证方法。验证方法就是主要资料来源和验证所采用的方法。主要资料来源(监测和监督)和验证方法可按照数据收集的类型、信息的来源渠道和收集方法进行划分。4重要的假定条件在逻辑框架

5、的4个目标层次之间有一些重要的限制条件,称为假定条件,即必要的外部条件或风险。重要的假定条件主要是指可能对项目的进展或成果产生影响,而项目管理者又无法控制的外部条件,即不可控风险或限制条件。二、 项目概述(一)项目基本情况1、项目名称:包覆纱工程项目2、承办单位名称:xxx投资管理公司3、项目性质:扩建4、项目建设地点:xx5、项目联系人:马xx(二)主办单位基本情况公司不断推动企业品牌建设,实施品牌战略,增强品牌意识,提升品牌管理能力,实现从产品服务经营向品牌经营转变。公司积极申报注册国家及本区域著名商标等,加强品牌策划与设计,丰富品牌内涵,不断提高自主品牌产品和服务市场份额。推进区域品牌建

6、设,提高区域内企业影响力。公司秉承“诚实、信用、谨慎、有效”的信托理念,将“诚信为本、合规经营”作为企业的核心理念,不断提升公司资产管理能力和风险控制能力。本公司秉承“顾客至上,锐意进取”的经营理念,坚持“客户第一”的原则为广大客户提供优质的服务。公司坚持“责任+爱心”的服务理念,将诚信经营、诚信服务作为企业立世之本,在服务社会、方便大众中赢得信誉、赢得市场。“满足社会和业主的需要,是我们不懈的追求”的企业观念,面对经济发展步入快车道的良好机遇,正以高昂的热情投身于建设宏伟大业。企业履行社会责任,既是实现经济、环境、社会可持续发展的必由之路,也是实现企业自身可持续发展的必然选择;既是顺应经济社

7、会发展趋势的外在要求,也是提升企业可持续发展能力的内在需求;既是企业转变发展方式、实现科学发展的重要途径,也是企业国际化发展的战略需要。遵循“奉献能源、创造和谐”的企业宗旨,公司积极履行社会责任,依法经营、诚实守信,节约资源、保护环境,以人为本、构建和谐企业,回馈社会、实现价值共享,致力于实现经济、环境和社会三大责任的有机统一。公司把建立健全社会责任管理机制作为社会责任管理推进工作的基础,从制度建设、组织架构和能力建设等方面着手,建立了一套较为完善的社会责任管理机制。(三)项目建设选址及用地规模本期项目选址位于xx,占地面积约47.00亩。项目拟定建设区域地理位置优越,交通便利,规划电力、给排

8、水、通讯等公用设施条件完备,非常适宜本期项目建设。三、 项目总投资及资金构成本期项目总投资包括建设投资、建设期利息和流动资金。根据谨慎财务估算,项目总投资21062.86万元,其中:建设投资16418.16万元,占项目总投资的77.95%;建设期利息183.68万元,占项目总投资的0.87%;流动资金4461.02万元,占项目总投资的21.18%。四、 资金筹措方案(一)项目资本金筹措方案项目总投资21062.86万元,根据资金筹措方案,xxx投资管理公司计划自筹资金(资本金)13565.79万元。(二)申请银行借款方案根据谨慎财务测算,本期工程项目申请银行借款总额7497.07万元。五、 项

9、目预期经济效益规划目标1、项目达产年预期营业收入(sp):44400.00万元。2、年综合总成本费用(tc):35452.84万元。3、项目达产年净利润(np):6547.70万元。4、财务内部收益率(firr):23.38%。5、全部投资回收期(pt):5.40年(含建设期12个月)。6、达产年盈亏平衡点(bep):15528.17万元(产值)。六、 项目建设进度规划项目计划从可行性研究报告的编制到工程竣工验收、投产运营共需12个月的时间。七、 大数据系统和数据挖掘技术(一)数据挖掘概述1大数据大数据是指超过既往数据库系统规模、传输速度和处理能力,或者既往数据库系统结构无法容纳的数据。大数据

10、常以万亿或eb衡量,且种类多、实时性强,蕴藏的商业价值大。很多现有的新或旧的信息基础设施、工具和技术可用来开发和利用大数据中蕴藏的价值。大数据有各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章、买卖记录、网络日志、病历、事监控、视频和图像档案,及大型电子商务。大数据是数据挖掘产生与生存发展的土壤。如今数据每五年翻一番,面对前所未有的海量数据,为了从中发现有用的信息必须进行数据挖掘。此外,计算机存储、处理大量数据,以及运算的能力大为增强,为数据挖掘创造了条件,使其成为一门独特的学科和技术。2数据挖掘与数据分析的区别数据挖掘与数据分析的主要区别在于:(1)处理工作量。数据分析的数据

11、量可能并不大,而数据挖掘的数据量极大。(2)制约条件。数据分析是从某些假设出发,建立方程或模型,而数据挖掘不作假设,可以自动建立方程。(3)处理对象。数据分析往往是针对数字型数据,而数据挖掘对象类型繁多,例如图像、声音、文本等。(4)处理结果。数据分析可以解释结果的含义;数据挖掘的结果不易解释,着眼于预测未来,并提出决策建议。想要从数据中发现规律(即认知),往往需将数据分析和数据挖掘结合起来。(二)数据挖掘步骤按挖掘对象,数据挖掘分为数据库与数据仓库挖掘和网络挖掘两种,各自步骤分述如下。1数据库与数据仓库挖掘数据挖掘一般有信息收集、数据集成、数据规约、数据清理、数据变换、数据挖掘、模式评估和知

12、识表示8个步骤。(1)信息收集。从确定的挖掘对象中提取特征,然后选择合适的收集方法,将收集到的信息存入数据库。对于海量数据,必须选择合适的数据仓库。(2)数据集成。把来源、格式、特点、性质不同的数据按逻辑或物理属性加以编排,以便以后使用。(3)数据规约。多数数据挖掘算法耗时很长,商业数据往往较多,数据挖掘更耗时间。数据规约就是简化已有可用数据集的表示,规约后数量大减,但仍能保持原数据的完整性,对规约数据的挖掘结果,与对规约前数据的挖掘结果相同或几乎相同。(4)数据清理。有些数据不完整(属性缺少属性值)、含噪声(属性值错误),不一致(同一信息有多种表示),需要清理,使其完整、正确、一致后存入数据

13、仓库。(5)数据变换。将数据变换成适合数据挖掘的形式。实数型数据,可将其分层和离散化。(6)数据挖掘。根据数据格式、属性与特点,选择合适的处理工具,例如统计方法、事例推理、决策树、规则推理、模糊集,甚至神经网络,取得有用的信息。(7)模式评估。由行业专家核实数据挖掘结果是否合理、是否可用。(8)知识表示。将数据挖掘得到的信息以可视方式交给用户,或作为新的知识存人知识库,供其他应用程序使用。并非所有的数据挖掘都要走上述的每一步。若只有一个数据源,则可以省略数据集成。数据规约、数据清理、数据变换合称数据预处理。数据挖掘至少60%的费用要花在信息收集阶段,而至少60%以上的精力和时间要花在数据预处理

14、上。数据挖掘是一个反复多次的过程,若一次未满足要求或未得到有用结果,则需回到前面,经过调整后重新开始。2,网络挖掘网络挖掘可分为网络用户行为挖掘与网络信息挖掘。前者基本不在工程咨询人员关心之列。后者可理解为“从www中发现和分析有用的信息”。网络信息挖掘是在已知数据样本的基础上,通过归纳学习、机器学习、统计分析等发现挖掘对象间的内在关系与特性,进而在网络中提取用户感兴趣的信息,获得更高层次的知识和规律。网络信息挖掘沿用了robot,全文检索、人工智能的模式识别、神经网络等技术。现在的搜索引擎使用了这些技术,能够在网页或网站数据库中为用户搜寻有用信息。网络信息挖掘具体步骤如下:(1)确立目标样本

15、。由用户选择目标文本,提取特征信息。(2)提取特征信息。根据目标样本的词频分布,从统计词典中提取挖掘目标的特征向量并计算出相应的权值。(3)网络信息获取。先利用搜索引擎站点选择待采集站点,再利用robot程序采集静态web页面,最后获取被访问站点网络数据库中的动态信息,生成www资源索引库。(4)信息特征匹配。提取索引库中的源信息特征向量,并与目标样本的特征向量对照,将符合要求的信息交给用户。八、 数据统计分析数据分析重要的一类是对具有随机性质的数据进行分析,在多数情况下是用于预测。本段仅介绍统计分析。统计分析不仅是计算样本的数字特征(期望值、方差、相关系数、协方差、离散度、概率分布等),还应

16、当建立适当的模型,进而做出预测。统计分析一般有如下工作或阶段。1选择数字特征。统计分析,就是利用若干数字特征全面认识数据的统计规律。选择数字特征是统计分析研究问题的准备阶段,是统计过程的重要环节。数字特征应当:(1)能够客观地反映研究分析对象的性质、特点、内在联系和运动过程;(2)尽可能突出重点,反映分析对象的全貌;(3)应能反映分析对象的变化;(4)便于资料获取。2收集并整理数据。确定了需用的数字特征之后,就要收集并整理所需的数据。样本的容量与质量对统计结果影响极大。3计算数字特征。利用整理后的样本计算必要的数字特征。这项工作可以同下面的建模合在一起,利用适当的软件进行。4建立模型。计算出样

17、本数字特征后,应选择适合样本模式的模型。统计分析可用的模型很多,都有各自的特点及适用条件。选择模型时,应全面考虑研究对象与目的、到手的数据与资料、统计方法等各自的特点,以及咨询人员对方法的熟悉程度等。5检验模型误差。建模之后,可利用样本检验模型的误差,误差大小由样本与所选模型与方法所决定。根据经济学理论和研究对象的具体特点,分析和评价模型误差,以及模型和方法本身;若误差未达到要求,应改进模型与方法。6利用模型预测。预测是咨询结论和建议的基本依据之一,应成为咨询及决策人员的高质量信息。7评价统计与预测结果。对统计与预测结果进行评价的任务是对初步统计结果(如离散程度、影响、走势等)进行概括,并寻找它们之间的联系。评价过程一般有:形成初步概念;对现象定性;提出主要观点;阐述所提观点的理由;提出论据;得出结论。咨询工程师在进行评价时,要在大局高度上全面、长远地看问题,多方面观察,不偏废任何一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论