教案6概率与概率分布_第1页
教案6概率与概率分布_第2页
教案6概率与概率分布_第3页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、教学内容第四章概率根底和抽样分布随机事件与概率课次/ 学时6/2教学目的要求理解试验、结果、事件、样本空间、概率;掌握概率、概率的性质及其运算法那么;教学重点掌握概率的性质与运算法那么;教学难点正确运用乘法法那么、全概率公式进行计算;教学内容、设计与时间安排:A. 随堂测试30分钟测试内容:统计数据的整理与显示测试内容详见阶段测试二答案及采分点详见阶段测试文件B. 课程导入10分钟美国鱼类和野生动物管理局要求对任何一次捕捞,每只扇贝 的平均重量至少为磅,该要求旨在保护小扇贝。一只渔船抵达马萨诸塞州一个港口,船上装着11000袋扇贝, 港口负责人随机挑选了 100袋检查重量。港口员工从每一袋 中

2、取出一大勺扇贝,然后用着一大勺扇贝的重量除以扇贝的 数量,以此估算出袋子中每只扇贝的平均重量。根据用这种 方法所产生的100个样本统计量,港口负责人估算出该渔船 的每只扇贝平均重量为磅。样本标准差为联邦政府认为这是 违反重量标准确实凿证据,立刻没收了该渔船95%勺扇贝并随后将其进行拍卖。渔船主对美国政府非常不满,船长宣城渔船完全遵守了重量 标准,并对政府提出了诉讼。他聘请了波士顿一家律师事务 所为代表,该律师事务所想请你来评定该渔船主是否有理由 对联邦政府提出诉讼。你该怎么办教学组织设计 采用阶段测试的形式:教师 将试题打在PPT上,学生作 答,完毕后上交纸质版答题 纸讲授:PPT板书案例教学

3、:通过具体例子 易化学生对根本概念和公 式的理解。C.新课讲授(50分钟)一、随机事件的几个根本概念(10分钟)1、实验1. 在相同条件下,对事物或现象所进行的观察例如:掷一枚骰子,观察其出现的点数2. 试验的特点可以在相同的条件下重复进行每次试验的可能结果可能不止一个,但试验的所有可能结果在试验之前是确切知道的在试验结束之前,不能确定该次试验确实切结 果2、事件1. 事件(event):随机试验的每一个可能结果(任何样本 点集合)例如:掷一枚骰子出现的点数为 32. 随机事件(ran dom eve nt):每次试验可能出现也可能不出现的事件例如:掷一枚骰子可能出现的点数3. 必然事件(ce

4、rtain eve nt):每次试验一疋出现的事件,用表示例如:掷一枚骰子出现的点数小于 74. 不可能事件(impossible eve nt):每次试验一疋不出现的事件,用表示例如:掷一枚骰子出现的点数大于 63、事件与样本空间1.根本领件(eleme ntary eve nt)案例分析一解题思路一板书计算过程一个不可能再分的随机事件例如:掷一枚骰子出现的点数例如:点数大于2,奇数点2.样本空间(eample Space)一个试验中所有根本领件的集合,用表示例如:在掷枚骰子的试验中,1,2,3,4,5,6在投掷硬币的试验中,正面,反面4、事件的关系和运算包含、并与和、交与积、互斥、对立、差

5、事件的概率(10分钟)1、古典定义如果某一随机试验的结果有限,而且各个结果在每次试验中启发式教学:通过提问引 发学生思考,加深学生对 主观概率与客观概率区别 的理解。出现的可能性相同,贝U事件A发生的概率为该事件所包含的 根本领件个数P俠 与样本空间中所含的根本领本领件个数样本空间所包含的基事件个数比值,记为【例】某钢铁公司所属三个工厂的职工人数如下表。从 该公司中随机抽取1人,问:(1) 该职工为男性的概率(2) 该职工为炼钢厂职工的概率某钢铁公司所属企业职工人数工厂男职工女职工合计炼钢厂炼铁厂轧钢厂4000320090018001600600620048001500合计8500400012

6、5002、统计定义在相同条件下进行n次随机试验,事件A出现m次,那么比值 mn称为事件A发生的频率。随着n的增大,该频率围绕某 一常数P上下摆动,且波动的幅度逐渐减小,取向于稳定, 这个频率的稳定值即为事件A的概率,记为P(A) m Pn例如,投掷一枚硬币,出现正面和反面的频率,随着投掷次 数n的增大,出现正面和反面的频率稳定在 1/2左右【例】某工厂为节约用电,规定每天的用电量指标为1000度。按照上个月的用电记录,30天中有12天的 用电量超过规定指标,假设第二个月仍没有具体的节电 措施,试问该厂第一天用电量超过指标的概率。解:上个月30天的记录可以看作是重复进行了 30次 试验,试验A表

7、示用电超过指标出现了 12次。根据概率的统计定义有超过用电指标天数12P(A)试验的天数30 0.43、主观概率定义1.对一些无法重复的试验,确定其结果的概率只能根据 以往的经验人为确定2概率是一个决策者对某事件是否发生,根据个人掌握 的信息对该事件发生可能性的判断 想一想,能不能举出一个主观概率的例子。三、概率的性质和运算法那么(30分钟)1、概率的性质1. 非负性对任意事件A,有0P 12. 标准性必然事件的概率为1;不可能事件的概率为0。即 P () = 1 ; P () = 03. 可加性假设 A 与 B 互斥,那么 P ( AU B ) = P ( A ) + P (B )推广到多个

8、两两互斥事件 A,A,A,有P(AU A UUA) = P ( A)+ P (A) + + P (A)2、概率的加法法那么法那么一1.两个互斥事件之和的概率,等于两个事件概率之和。设A和B为两个互斥事件,那么P ( AU B ) = P ( A ) + P ( B )课堂训练:找两位同学再黑板上板书,其余同学在笔记本上书写2.事件A , A,,A两两互斥,那么有P ( AU A UU A)=P ( Ai ) + P (A ) + + P (A )【例】根据钢铁公司职工的例子,随机抽取一名职工,计算该职工为炼钢厂或轧钢厂职工的概率解:用A表示“抽中的为炼钢厂职工这一事件;B表示“抽 中的为轧钢厂

9、职工这一事件。随机抽取一人为炼钢厂或轧 钢厂职工的事件为互斥事件A与B的和,其发生的概率为48001500P(A B) P(A) P(B)0.5041250012500法那么二对任意两个随机事件A和B,它们和的概率为两个事件分别概率的和减去两个事件交的概率,即P ( AU B ) = P ( A ) + P ( B ) - P ( An B )【例】设某地有甲、乙两种报纸,该地成年人中有 20滋甲 报纸,16滋乙报纸,8%5种报纸都读。问成年人中有百分之 几至少读一种报纸。3、条件概率与概率的乘法公式在事件B已经发生的条件下,求事件 A发生的概率,称这种概率为事件B发生条件下事件A发生的条件概

10、率。概率的乘法公式:1. 用来计算两事件交的概率2. 以条件概率的定义为根底3. 设 A、B 为两个事件,假设 P( B)0,那么 P(AB=P(B)P(A|B), 或 P(AB=P(A)P(B| A【例】设有1000中产品,其中850件是正品,150件是次品, 从中依次抽取2件,两件都是次品的概率是多少解:设A表示 第i次抽到的是次品(i =1,2),所求概率为P(AA)RAA)P(A)P(A 1 A)150149 门 w0. 02241000 9994、事件的独立性:1. 一个事件的发生与否并不影响另一个事件发生的概率,那么称两个事件独立2. 假设事件 A与 B独立,贝U P(B|A)=P

11、(B), P(A| B)=P(A)3. 此时概率的乘法公式可简化为P(AB=P(B) P(B)4. 推广到n个独立事件,有P(A1 A A)=P(A)P(A)P(A)【例】某工人同时看管三台机床,每单位时间(如30分钟) 内机床不需要看管的概率:甲机床为,乙机床为,丙机床为。 假设机床是自动且独立地工作,求(1) 在30分钟内三台机床都不需要看管的概率(2) 在30分钟内甲、乙机床不需要看管,且丙机床需要看管的概率解:设A1,A,A为甲、乙、丙三台机床不需要看管的事件,Ab为丙机床需要看管的事件,依题意有(1) P(AAA)= P(A)P(A)P(A)=(2) P(AA A)= P(A) P(A)P( A)5、全概率公式设事件A1, A2,An两两互斥,A1+A + An=(满足这 两个条件的事件组称为一个完备事件组),且P(A)0( i =1,2,,n),那么对任意事件B,有nP(B)p(A)P(B|A)i 1我们把事件A, A,,A看作是引起事件B发生的所有可 能原因,事件B能且只能在原有A, A,,A之一发生的 条件下发生,求事件B的概率就是上面的全概公式【例】某车间用甲、乙、丙三台机床进行生产,各种机床的 次品率

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论