![2021年中考数学《特殊的四边形》总复习训练含答案解析_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-9/24/812d7f16-9f8c-4078-acfe-b268895c5d24/812d7f16-9f8c-4078-acfe-b268895c5d241.gif)
![2021年中考数学《特殊的四边形》总复习训练含答案解析_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-9/24/812d7f16-9f8c-4078-acfe-b268895c5d24/812d7f16-9f8c-4078-acfe-b268895c5d242.gif)
![2021年中考数学《特殊的四边形》总复习训练含答案解析_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-9/24/812d7f16-9f8c-4078-acfe-b268895c5d24/812d7f16-9f8c-4078-acfe-b268895c5d243.gif)
![2021年中考数学《特殊的四边形》总复习训练含答案解析_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-9/24/812d7f16-9f8c-4078-acfe-b268895c5d24/812d7f16-9f8c-4078-acfe-b268895c5d244.gif)
![2021年中考数学《特殊的四边形》总复习训练含答案解析_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-9/24/812d7f16-9f8c-4078-acfe-b268895c5d24/812d7f16-9f8c-4078-acfe-b268895c5d245.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、特殊的四边形矩形、菱形一、选择题1如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是ABCD不确定2假设矩形的一条对角线与一边的夹角是40,那么两条对角线相交所成的锐角是A20B40C80D1003如图,矩形ABCD中,AB=8,BC=6,E、F是AC上的三等分点,那么SBEF为A8B12C16D244把一张长方形的纸片按如下图的方式折叠,EM、FM为折痕,折叠后的C点落在BM或BM的延长线上,那么EMF的度数是A85B90C95D1005如图,在矩形ABCD中,EFAB,GHBC,EF、GH的交点P在BD上,
2、图中面积相等的四边形有A3对B4对C5对D6对6如图,矩形ABCD的周长为68,它被分成7个全等的矩形,那么矩形ABCD的面积为A98B196C280D2847如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,假设BC=3,那么折痕CE的长为AB CD68如下图,把一长方形纸片沿MN折叠后,点D,C分别落在D,C的位置假设AMD=36,那么NFD等于A144B126C108D729将矩形纸片ABCD按如下图的方式折叠,得到菱形AECF假设AB=3,那么BC的长为A1B2CD10如图,矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,BEG60现沿直线EG将
3、纸片折叠,使点B落在纸片上的点H处,连接AH,那么与BEG相等的角的个数为A4B3C2D111如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A、D处,那么整个阴影局部图形的周长为A18cmB36cmC40cmD72cm12以下识别图形不正确的选项是A有一个角是直角的平行四边形是矩形B有三个角是直角的四边形是矩形C对角线相等的四边形是矩形D对角线互相平分且相等的四边形是矩形13四边形ABCD的对角线相交于点O,以下条件不能判定它是矩形的是AAB=CD,ABCD,BAD=90BAO=CO,BO=DO
4、,AC=BDCBAD=ABC=90,BCD+ADC=180DBAD=BCD,ABC=ADC=9014直角三角形中,两条直角边边长分别为12和5,那么斜边中线的长是A26B13C30D6.515将一个矩形的纸对折两次,沿图中虚线将一角剪掉再翻开后,得到的图形为ABCD16菱形一条对角线长为8m,周长为20m,那么其面积为A40m2B20m2C48m2D24m217用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是A一组邻边相等的四边形是菱形B四边相等的四边形是菱形C对角线互相垂直的平行四边形是菱形D每条对角线平分一组对角的平行四边形是菱形18DEAC、DFAB,添加以下条件后,不能
5、判断四边形DEAF为菱形的是AAD平分BACBAB=AC且BD=CDCAD为中线DEFAD二、填空题19矩形ABCD中,对角线AC=10cm,AB:BC=3:4,那么它的周长是cm20矩形ABCD的两条对角线相交于点O,如果矩形的周长是34cm,又AOB的周长比ABC的周长少7cm,那么AB=cm,BC=cm21在矩形ABCD中,对角线AC、BD相交于点O,假设AOB=110,那么OAB=度22如下图,把两个大小完全一样的矩形拼成“L形图案,那么FAC=度,FCA=度23如图,在矩形ABCD中,点E是BC上一点,AE=AD,DFAE,垂足为F,线段DF与图中的哪一条线段相等?先将猜测出的结论填
6、写在下面的横线上,然后再加以证明即DF=写出一条线段即可24将矩形ABCD沿AE折叠,得到如下图图形假设CED=56,那么AED的大小是25菱形ABCD的周长为36,其相邻两内角的度数比为1:5,那么此菱形的面积为26菱形的两条对角线长为6cm和8cm,菱形的周长是cm,面积是cm227如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点请你添加一个条件,使四边形EFGH为矩形,应添加的条件是28菱形的两条对角线的长分别是4cm和8cm,那么它的边长为cm29假设四边形ABCD是平行四边形,使四边形ABCD是菱形,请补充条件写一个即可30菱形ABCD的边长为6,A=60,
7、如果点P是菱形内一点,且PB=PD=2,那么AP的长为31四边形ABCD为菱形,BAD=60,E为AD中点,AB=6cm,P为AC上任一点求PE+PD的最小值是32如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,那么这个最小值是33四边形ABCD为平行四边形,要使四边形ABCD为菱形,还应添加条件34用两张对边平行的纸条交叉重叠放在一起,那么四边形ABCD为;两张纸条互相垂直时,四边形ABCD为;假设两张纸条的宽度相同,那么四边形ABCD为三、解答题35如图1中的矩形ABCD,沿对角线AC剪开,再把AB
8、C沿着AD方向平行移动,得到图2在图2中,ADCCBA,ACAC,ABDC除DAC与CBA外,指出有哪几对全等的三角形不能添加辅助线和字母?选择其中一对加以证明36如图,在ABCD的纸片中,ACAB,AC与BD相交于点O,将ABC沿对角线AC翻转180,得到ABC1以A,C,D,B为顶点的四边形是矩形吗请填“是、“不是或“不能确定;2假设四边形ABCD的面积S=12cm2,求翻转后纸片重叠局部的面积,即SACE=cm237如图,四边形ABCD中,ABC=ADC=90,M、N分别是AC、BD的中点,那么MNBD成立吗?试说明理由38如下图,两个全等菱形的边长为1厘米,一只蚂蚁由A点开始按ABCD
9、EFCGA的顺序沿菱形的边循环运动,行走2021厘米后停下,那么这只蚂蚁停在点39如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F求证:四边形AFCE是菱形特殊的四边形矩形、菱形参考答案与试题解析一、选择题1如图,点P是矩形ABCD的边AD上的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是ABCD不确定【考点】矩形的性质;相似三角形的判定与性质【专题】压轴题;动点型【分析】过P点作PEAC,PFBD,由矩形的性质可证PEACDA和PFDBAD,根据和,即和,两式相加得PE+PF=,即为点P到矩
10、形的两条对角线AC和BD的距离之和【解答】解:法1:过P点作PEAC,PFBD矩形ABCDADCDPEACDAAC=BD=5同理:PFDBAD+得:PE+PF=即点P到矩形的两条对角线AC和BD的距离之和是法2:连结OPAD=4,CD=3,AC=5,又矩形的对角线相等且互相平分,AO=OD=2.5cm,SAPO+SPOD=2.5PE+2.5PF=2.5PE+PF=34,PE+PF=应选:A【点评】根据矩形的性质,结合相似三角形求解2假设矩形的一条对角线与一边的夹角是40,那么两条对角线相交所成的锐角是A20B40C80D100【考点】矩形的性质【专题】计算题【分析】根据矩形的性质,得BOC是等
11、腰三角形,再由等腰三角形的性质进行答题【解答】解:图形中1=40,矩形的性质对角线相等且互相平分,OB=OC,BOC是等腰三角形,OBC=1,那么AOB=21=80应选C【点评】此题主要考查了矩形的性质,对角线相等且互相平分,矩形被对角线分成四个等腰三角形3如图,矩形ABCD中,AB=8,BC=6,E、F是AC上的三等分点,那么SBEF为A8B12C16D24【考点】矩形的性质【专题】压轴题【分析】要求SBEF只要求出底边EF以及EF边上的高就可以,高可以根据ABC的面积得到,EF=AC,根据勾股定理得到AC,就可以求出EF的长,从而求出EFG的面积【解答】解:SABC=86=24又E、F是A
12、C上的三等分点SBEF=SABC=8应选A【点评】此题运用了勾股定理,直角三角形的两直角边,求斜边上的高,这类题的解决方法是需要熟记的内容4把一张长方形的纸片按如下图的方式折叠,EM、FM为折痕,折叠后的C点落在BM或BM的延长线上,那么EMF的度数是A85B90C95D100【考点】翻折变换折叠问题【分析】根据折叠的性质:对应角相等,对应的线段相等,可得【解答】解:根据图形,可得:EMB=EMB,FMB=FMC,FMC+FMB+EMB+BME=180,2EMB+FMB=180,EMB+FMB=FME,EMF=90应选B【点评】此题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,
13、最好实际操作图形的折叠,易于找到图形间的关系5如图,在矩形ABCD中,EFAB,GHBC,EF、GH的交点P在BD上,图中面积相等的四边形有A3对B4对C5对D6对【考点】矩形的性质【专题】压轴题【分析】此题考查了矩形的性质,得出EPDHDP,那么SEPD=SHDP,通过对各图形的拼凑,得到的结论【解答】解:在矩形ABCD中,EFAB,ABDC,EFDC,那么EPDH;故PED=DHP;同理DPH=PDE;又PD=DP;所以EPDHDP;那么SEPD=SHDP;同理,SGBP=SFPB;那么1S梯形BPHC=SBDCSHDP=SABDSEDP=S梯形ABPE;2SAGPE=S梯形ABPESGB
14、P=S梯形BPHCSFPB=SFPHC;3S梯形FPDC=SFPHC+SHDP=SAGPE+SEDP=S梯形GPDA;4SAGHD=SAGPE+SHDPE=SPFCH+SPHDE=SEFCD;5SABFE=SAGPE+SGBFP=SPFCH+SGBFP=SGBCH应选C【点评】此题是一道结论开放题,掌握矩形的性质,很容易得到答案6如图,矩形ABCD的周长为68,它被分成7个全等的矩形,那么矩形ABCD的面积为A98B196C280D284【考点】矩形的性质【专题】计算题【分析】等量关系为:5个小矩形的宽等于2个小矩形的长;6个小矩形的宽加一个小矩形的长等于大长方形周长的一半【解答】解:设小矩形
15、宽为x,长为y那么大矩形长为5x或2y,宽为x+y依题意有x+y+5x=34;5x=2y解得:x=4,y=10那么大矩形长为20,宽为14所以大矩形面积为280应选C【点评】此题考查了矩形的面积和一种很重要的思想:方程思想7如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,假设BC=3,那么折痕CE的长为AB CD6【考点】翻折变换折叠问题;勾股定理【分析】先根据图形翻折变换的性质求出AC的长,再由勾股定理及等腰三角形的判定定理即可得出结论【解答】解:CEO是CEB翻折而成,BC=OC,BE=OE,B=COE=90,EOAC,O是矩形ABCD的中心,OE是AC的
16、垂直平分线,AC=2BC=23=6,AE=CE,在RtABC中,AC2=AB2+BC2,即62=AB2+32,解得AB=3,在RtAOE中,设OE=x,那么AE=3x,AE2=AO2+OE2,即3x2=32+x2,解得x=,AE=EC=3=2应选:A【点评】此题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键8如下图,把一长方形纸片沿MN折叠后,点D,C分别落在D,C的位置假设AMD=36,那么NFD等于A144B126C108D72【考点】翻折变换折叠问题;矩形的性质【专题】计算题【分析】根据AMD=36
17、和折叠的性质,得NMD=NMD=72;根据平行线的性质,得BNM=NMD=72;根据折叠的性质,得D=D=90;根据四边形的内角和定理即可求得NFD的值【解答】解:AMD=36,NMD=NMD=72ADBC,BNM=NMD=72又D=D=90,NFD=36072290=126应选B【点评】此题综合运用了折叠的性质、平行线的性质、四边形的内角和定理9将矩形纸片ABCD按如下图的方式折叠,得到菱形AECF假设AB=3,那么BC的长为A1B2CD【考点】菱形的性质;勾股定理【专题】计算题【分析】根据题意可知,AC=2BC,B=90,所以根据勾股定理可知AC2=AB2+BC2,即2BC2=32+BC2
18、,从而可求得BC的长【解答】解:AC=2BC,B=90,AC2=AB2+BC2,2BC2=32+BC2,BC=应选:D【点评】此题主要考查学生对菱形的性质及勾股定理的理解及运用10如图,矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,BEG60现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,那么与BEG相等的角的个数为A4B3C2D1【考点】翻折变换折叠问题【分析】连BH,根据折叠的性质得到1=2,EB=EH,BHEG,那么EBH=EHB,又点E是AB的中点,得EH=EB=EA,于是判断AHB为直角三角形,且3=4,根据等角的余角相等得到1=3,因此有1=2=3=4【解答】
19、解:连BH,如图,沿直线EG将纸片折叠,使点B落在纸片上的点H处,1=2,EB=EH,BHEG,而160,1AEH,EB=EH,EBH=EHB,又点E是AB的中点,EH=EB=EA,AHB为直角三角形,AHB=90,3=4,1=3,1=2=3=4应选B【点评】此题考查了折叠的性质:折叠前后的两个图形全等,即对应角相等,对应线段相等也考查了假设三角形一边上的中线等于这边的一半,那么此三角形为直角三角形11如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A、D处,那么整个阴影局部图形的周长为A18cm
20、B36cmC40cmD72cm【考点】翻折变换折叠问题【专题】压轴题【分析】延长A1E交CD于点G,由题意知GE=EH,FH=GF,那么阴影局部的周长与原矩形的周长相等【解答】解:延长A1E交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD1A1四边形EGDA,AD=A1D1,AE=A1E,DG=D1H,FH=FG,阴影局部的周长=矩形的周长=12+62=36cm应选:B【点评】此题利用了翻折的性质:对应图形全等,对应边相等12以下识别图形不正确的选项是A有一个角是直角的平行四边形是矩形B有三个角是直角的四边形是矩形C对角线相等的四边形是矩形D对角线互相平分且相等的四边形是矩形【考点
21、】矩形的判定【专题】证明题【分析】矩形的判定定理有:1有一个角是直角的平行四边形是矩形2有三个角是直角的四边形是矩形3对角线互相平分且相等的四边形是矩形,据此判定【解答】解:A、有一个角是直角的平行四边形是矩形,正确;B、有三个角是直角的四边形是矩形,正确;C、对角线相等的四边形不一定是矩形,对角线相等的平行四边形才是矩形,错误;D、对角线互相平分且相等的四边形是矩形,正确应选C【点评】此题主要考查的是矩形的判定定理1有一个角是直角的平行四边形是矩形2有三个角是直角的四边形是矩形3对角线互相平分且相等的四边形是矩形,据此判定13四边形ABCD的对角线相交于点O,以下条件不能判定它是矩形的是AA
22、B=CD,ABCD,BAD=90BAO=CO,BO=DO,AC=BDCBAD=ABC=90,BCD+ADC=180DBAD=BCD,ABC=ADC=90【考点】矩形的判定【分析】矩形的判定定理有:1有一个角是直角的平行四边形是矩形2有三个角是直角的四边形是矩形3对角线互相平分且相等的四边形是矩形据此判断【解答】解:A、一个角为直角的平行四边形为矩形,故A正确B、矩形的对角线平分且相等,故B正确C、BCD+ADC=180,但BCD不一定与ADC相等,根据矩形的判定定理,故C不正确D、因为BAD=BCD,故ABCD,又因为,ABC=ADC=90,根据矩形的判定有一个角是直角的平行四边形是矩形,故D
23、正确应选C【点评】此题考查的是矩形的判定定理,但考生应注意的是由矩形的判定引申出来的各图形的判定难度一般14直角三角形中,两条直角边边长分别为12和5,那么斜边中线的长是A26B13C30D6.5【考点】勾股定理;直角三角形斜边上的中线【分析】由勾股定理可以求出斜边,再根据直角三角形中斜边上的中线等于斜边的一半可以求出斜边中线的长【解答】解:由勾股定理知,斜边c=13,直角三角形中斜边上的中线等于斜边的一半知,斜边中线的长=13=6.5应选D【点评】此题考查了勾股定理和直角三角形的性质:斜边上的中线等于斜边的一半15将一个矩形的纸对折两次,沿图中虚线将一角剪掉再翻开后,得到的图形为ABCD【考
24、点】剪纸问题【分析】根据题意知,对折实际上就是对称,对折两次的话,剪下应有4条边,并且这4条边还相等,从而可以得到剪下的图形展开后一定是菱形【解答】解:根据题意折叠剪图可得,剪下的四边形四条边相等,根据四边形等的四边形是菱形可得剪下的图形是菱形,应选:A【点评】此题考查了剪纸问题,关键是掌握菱形的判定方法:四边形等的四边形是菱形16菱形一条对角线长为8m,周长为20m,那么其面积为A40m2B20m2C48m2D24m2【考点】菱形的性质【专题】几何图形问题【分析】菱形对角线互相垂直平分,所以OA2+OB2=AB2,根据可得AB=5,BO=4,利用勾股定理求得AO,即可求得AC的长,根据AC、
25、BD即可求菱形ABCD的面积,即可解题【解答】解:根据题意可得:BD=8m,那么BO=DO=4m,菱形周长为20m,AB=5m,菱形对角线互相垂直平分,OA2+OB2=AB2,AO=3m,AC=6m,故菱形的面积S=68=24m2应选D【点评】此题考查了菱形对角线互相垂直平分的性质,菱形面积的计算,此题中根据勾股定理求AO的值是解题的关键17用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是A一组邻边相等的四边形是菱形B四边相等的四边形是菱形C对角线互相垂直的平行四边形是菱形D每条对角线平分一组对角的平行四边形是菱形【考点】菱形的判定;作图复杂作图【分析】关键菱形的判定定理有四边
26、都相等的四边形是菱形判断即可【解答】解:由图形作法可知:AD=AB=DC=BC,四边形ABCD是菱形,应选:B【点评】此题主要考查对作图复杂作图,菱形的判定等知识点的理解和掌握,能熟练地运用性质进行推理是解此题的关键18DEAC、DFAB,添加以下条件后,不能判断四边形DEAF为菱形的是AAD平分BACBAB=AC且BD=CDCAD为中线DEFAD【考点】菱形的判定【专题】几何图形问题【分析】首先根据题意画出图形,然后由DEAC、DFAB,判定四边形DEAF为平行四边形,再由菱形的判定定理求解即可求得答案;注意掌握排除法在选择题中的应用【解答】解:如图,DEAC、DFAB,四边形DEAF为平行
27、四边形,A、AD平分BAC,DFAB,BAD=CAD,BAD=ADF,CAD=ADF,AF=DF,四边形DEAF为菱形;B、AB=AC且BD=CD,AD平分BAC,同理可得:四边形DEAF为菱形;C、由AD为中线,得不到AD平分BAC,证不出四边形DEAF的邻边相等,不能判断四边形DEAF为菱形;D、ADEF,DEAF是菱形应选C【点评】此题考查了菱形的判定此题难度不大,注意掌握数形结合思想的应用二、填空题19矩形ABCD中,对角线AC=10cm,AB:BC=3:4,那么它的周长是28cm【考点】矩形的性质;勾股定理【专题】计算题【分析】根据矩形的一组邻边和一条对角线组成一个直角三角形,解题即
28、可【解答】解:根据矩形的性质得到ABC是直角三角形,因为对角线AC=10cm,AB:BC=3:4,根据勾股定理得到BC2=AC2BC2=100BC2解得BC=8,AB=6,故它的周长=28+26=28cm故答案为28【点评】此题考查对矩形的性质以及勾股定理的运用20矩形ABCD的两条对角线相交于点O,如果矩形的周长是34cm,又AOB的周长比ABC的周长少7cm,那么AB=10cm,BC=7cm【考点】矩形的性质;勾股定理【专题】计算题【分析】根据矩形的对边相等以及所给的三角形的周长可得到和所求线段相关的两个式子,进而求解【解答】解:设AB=a,BC=b2OA=2OB=AC=,2a+2b=34
29、,即a+b=17由题意可知AOB的周长+7=ABC的周长AB+OA+OB+7=AB+BC+ACa+7=a+b+即b=7,a=177=10即AB=10,BC=7故答案为,10,7【点评】此题综合考查了矩形的性质及勾股定理的运用21在矩形ABCD中,对角线AC、BD相交于点O,假设AOB=110,那么OAB=35度【考点】矩形的性质;三角形内角和定理【专题】计算题【分析】根据矩形对角线的性质得到OAB的形状,进而求得底角的度数【解答】解:矩形的对角线相等且互相平分OA=OCAOB是等腰三角形OAB=OBAOAB+OBA+AOB=1802OAB+110=180OAB=35故答案为35【点评】此题考查
30、矩形的性质以及三角形内角和定理22如下图,把两个大小完全一样的矩形拼成“L形图案,那么FAC=90度,FCA=45度【考点】矩形的性质;全等三角形的判定与性质【专题】计算题【分析】两个大小完全一样的矩形拼成“L形图案所构成的AFGCAB,所以AF=AC,FAC=90,FCA=45度【解答】解:由AFGCAB,AFG=CAB,AF=ACAFG+FAG=90,CAB+FAG=90,FAC=90又AF=AC,FCA=18090=45故答案为:90;45【点评】根据矩形的性质得到全等三角形,进而求得AFC是等腰直角三角形23如图,在矩形ABCD中,点E是BC上一点,AE=AD,DFAE,垂足为F,线段
31、DF与图中的哪一条线段相等?先将猜测出的结论填写在下面的横线上,然后再加以证明即DF=BE写出一条线段即可【考点】矩形的性质;全等三角形的判定与性质【专题】几何图形问题【分析】根据矩形的性质得出ADBC,推出AFD=B,推出DAF=AEB,根据全等三角形的判定推出AFDEBA即可【解答】解:DF=BE,理由是:四边形ABCD是矩形,DFAE,B=AFD=90,ADBC,DAF=AEB,在AFD和EBA中AFDEBAAAS,DF=BE,故答案为:DF=BE【点评】此题考查了全等三角形的性质和判定,平行线的性质,全等三角形的性质和判定的应用,关键是推出AFDEBA,注意:矩形的四个角都是直角,矩形
32、的对边平行24将矩形ABCD沿AE折叠,得到如下图图形假设CED=56,那么AED的大小是62【考点】翻折变换折叠问题【专题】压轴题;操作型【分析】易得DED的度数,除以2即为所求角的度数【解答】解:CED=56,DED=18056=124,AED=AED,AED=DED=62故答案为:62【点评】考查翻折变换问题;用到的知识点为:翻折前后得到的角相等25菱形ABCD的周长为36,其相邻两内角的度数比为1:5,那么此菱形的面积为40.5【考点】菱形的性质【分析】根据相邻两内角的度数比为1:5,可求出一个30角,根据周长为36,求出菱形的边长,根据直角三角形里30角的性质求出高,从而求出面积【解
33、答】解:作AEBC于E点,其相邻两内角的度数比为1:5,B=180=30,菱形ABCD的周长为36,AB=BC=36=9AE=9=菱形的面积为:BCAE=9=40.5故答案为:40.5【点评】此题考查菱形的性质,菱形的邻角互补,四边相等26菱形的两条对角线长为6cm和8cm,菱形的周长是20cm,面积是24cm2【考点】菱形的性质;勾股定理【分析】根据菱形的面积等于两对角线乘积的一半可得到其面积,根据菱形的性质可求得其边长,从而可得到其周长【解答】解:如图,四边形ABCD是菱形,BD,AC分别是其对角线且BD=6,AC=8,求其面积和周长四边形ABCD是菱形,BD,AC分别是其对角线,BDAC
34、,BO=OD=3cm,AO=CO=4cm,AB=5cm,菱形的周长=54=20cm;S菱形=68=24cm2故此题答案为:20cm;24cm2【点评】此题主要考查学生对菱形的性质及勾股定理的理解及运用27如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点请你添加一个条件,使四边形EFGH为矩形,应添加的条件是ACBD【考点】中点四边形【分析】根据三角形的中位线定理,可以证明所得四边形的两组对边分别和两条对角线平行,所得四边形的两组对边分别是两条对角线的一半,再根据平行四边形的判定就可证明该四边形是一个平行四边形;所得四边形要成为矩形,那么需有一个角是直角,故对角线应满足
35、互相垂直【解答】解:如图,E,F分别是边AB,BC的中点,EFAC,EF=AC,同理HGAC,HG=AC,EFHG,EF=HG,四边形EFGH是平行四边形;要使四边形EFGH是矩形,那么需EFFG,即ACBD;故答案为:ACBD【点评】此题主要考查了三角形的中位线定理的运用同时熟记此题中的结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形28菱形的两条对角线的长分别是4cm和8cm,那么它的边长为2cm【考点】菱形的性质【专题】计算题【分析】根据菱形的性质及勾股定理即可求得其边长的值【解答】解:菱形的两条对角线分别是4cm,8cm,得到两
36、条对角线相交所构成的直角三角形的两直角边是4=2和8=4,那么根据勾股定理得到它的斜边即菱形的边长=2cm故答案为2【点评】此题考查菱形的性质以及勾股定理29假设四边形ABCD是平行四边形,使四边形ABCD是菱形,请补充条件此题答案不唯一,如ACBD或AB=AD等写一个即可【考点】菱形的判定【专题】开放型【分析】由四边形ABCD是平行四边形,根据菱形的判定定理求解即可求得答案【解答】解:四边形ABCD是平行四边形,当ACBD或AB=AD时,四边形ABCD是菱形故答案为:此题答案不唯一,如ACBD或AB=AD等【点评】此题考查了菱形的判定此题难度不大,注意熟记定理是解此题的关键30菱形ABCD的
37、边长为6,A=60,如果点P是菱形内一点,且PB=PD=2,那么AP的长为或【考点】菱形的性质【专题】压轴题;分类讨论【分析】根据题意得,应分P与A在BD的同侧与异侧两种情况进行讨论【解答】解:当P与A在BD的异侧时:连接AP交BD于M,AD=AB,DP=BP,APBD到线段两端距离相等的点在垂直平分线上,在直角ABM中,BAM=30,AM=ABcos30=3,BM=ABsin30=3,PM=,AP=AM+PM=4;当P与A在BD的同侧时:连接AP并延长AP交BD于点MAP=AMPM=2;当P与M重合时,PD=PB=3,与PB=PD=2矛盾,舍去AP的长为4或2故答案为4或2【点评】此题注意到
38、应分两种情况讨论,并且注意两种情况都存在关系APBD,这是解决此题的关键31四边形ABCD为菱形,BAD=60,E为AD中点,AB=6cm,P为AC上任一点求PE+PD的最小值是3【考点】轴对称最短路线问题;菱形的性质【专题】几何图形问题【分析】根据菱形的性质,可得AC是BD的垂直平分线,可得AC上的点到D、B点的距离相等,连接BE交AC与P,可得答案【解答】解:菱形的性质,AC是BD的垂直平分线,AC上的点到B、D的距离相等连接BE交AC于P点,PD=PB,PE+PD=PE+PB=BE,在RtABE中,由勾股定理得BE=3,故答案为:3【点评】此题考查了轴对称,对称轴上的点到线段两端点的距离
39、相等是解题关键32如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,那么这个最小值是5【考点】轴对称最短路线问题;勾股定理;菱形的性质【专题】计算题【分析】AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,那么此时EP+FP的值最小,根据菱形的性质推出N是AD中点,P与O重合,推出PE+PF=NF=AB,根据勾股定理求出AB的长即可【解答】解:AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,那么此时EP+FP的值最小,PN=PE,四边形ABCD是菱形,DAB=BCD,AD=AB=
40、BC=CD,OA=OC,OB=OD,ADBC,E为AB的中点,N在AD上,且N为AD的中点,ADCB,ANP=CFP,NAP=FCP,AD=BC,N为AD中点,F为BC中点,AN=CF,在ANP和CFP中,ANPCFPASA,AP=CP,即P为AC中点,O为AC中点,P、O重合,即NF过O点,ANBF,AN=BF,四边形ANFB是平行四边形,NF=AB,菱形ABCD,ACBD,OA=AC=3,BO=BD=4,由勾股定理得:AB=5,故答案为:5【点评】此题考查了轴对称最短问题,勾股定理,菱形的性质等知识点的应用,关键是理解题意确定出P的位置和求出AB=NF=EP+FP,题目比拟典型,综合性比拟
41、强,主要培养学生的计算能力33四边形ABCD为平行四边形,要使四边形ABCD为菱形,还应添加条件此题答案不唯一,如ACBD或AB=AD等【考点】菱形的判定【专题】开放型【分析】由四边形ABCD是平行四边形,根据菱形的判定定理求解即可求得答案【解答】解:四边形ABCD是平行四边形,当ACBD或AB=AD时,四边形ABCD是菱形故答案为:此题答案不唯一,如ACBD或AB=AD等【点评】此题考查了菱形的判定此题难度不大,注意熟记定理是解此题的关键34用两张对边平行的纸条交叉重叠放在一起,那么四边形ABCD为平行四边形;两张纸条互相垂直时,四边形ABCD为矩形;假设两张纸条的宽度相同,那么四边形ABC
42、D为菱形【考点】平行四边形的判定;菱形的判定;矩形的判定【分析】利用平行四边形、矩形及菱形的判定方法分别判定即可确定答案【解答】解:用两张平行的纸条交叉重叠放在一起,那么四边形ABCD为平行四边形;两张纸条互相垂直时,四边形ABCD为矩形;假设两张纸条的宽度相同,那么四边形ABCD为菱形,故答案为:平行四边形,矩形,菱形【点评】此题考查了平行四边形、矩形及菱形的判定方法,难度不大,属于根底题三、解答题35如图1中的矩形ABCD,沿对角线AC剪开,再把ABC沿着AD方向平行移动,得到图2在图2中,ADCCBA,ACAC,ABDC除DAC与CBA外,指出有哪几对全等的三角形不能添加辅助线和字母?选
43、择其中一对加以证明【考点】图形的剪拼【专题】探究型【分析】根据题意:先找到全等的三角形,根据平移的性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等找到等量关系进行证明即可【解答】解:有两对全等三角形,分别为:AAECCF,ADFCBE解法一:求证:AAECCF证明:由平移的性质可知:AA=CC,在AAE和CCF中,AAECCFASA解法二:求证:ADFCBE证明:由平移的性质可知:AECF,AFCE,四边形AECF是平行四边形AF=CE,AE=CFAB=CD,DF=BE,在ADF和CBE中ADFCBESAS【点评】此题考查平移的根本性质是:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等36如图,在ABCD的纸片中,ACAB,AC与BD相交于点O,将ABC沿对角线AC翻转180,得到ABC1以A,C,D,B为顶点的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络游戏公司前台接待总结
- 2025年全球及中国神经外科分流器行业头部企业市场占有率及排名调研报告
- 2025-2030全球草坪护理CRM软件行业调研及趋势分析报告
- 2025年全球及中国导向销行业头部企业市场占有率及排名调研报告
- 2025年全球及中国古董搬运行业头部企业市场占有率及排名调研报告
- 2025-2030全球双膜储气罐行业调研及趋势分析报告
- 2025-2030全球环保EPDM颗粒行业调研及趋势分析报告
- 2025-2030全球坏死性筋膜炎药品行业调研及趋势分析报告
- 2025-2030全球车辆后备箱释放电缆行业调研及趋势分析报告
- 2025-2030全球光伏舟托行业调研及趋势分析报告
- 第十一章《功和机械能》达标测试卷(含答案)2024-2025学年度人教版物理八年级下册
- 2025年销售部年度工作计划
- 2024年苏州工业园区服务外包职业学院高职单招职业适应性测试历年参考题库含答案解析
- ESG表现对企业财务绩效的影响研究
- DB3713T 340-2024 实景三维数据接口及服务发布技术规范
- 八年级生物开学摸底考(长沙专用)(考试版)
- 车间空调岗位送风方案
- 使用错误评估报告(可用性工程)模版
- 初一年级班主任上学期工作总结
- 2023-2024年同等学力经济学综合真题及参考答案
- 农村集体土地使用权转让协议
评论
0/150
提交评论