中考数学函数知识点归纳_第1页
中考数学函数知识点归纳_第2页
中考数学函数知识点归纳_第3页
中考数学函数知识点归纳_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、中考数学函数专题 一次函数一次函数y=kx+b的图象(1)一次函数,当 0时,的值随值得增大而增大;当 0时,的值随值得增大而减小。(2)正比例函数,当 0时,图象经过一、三象限;当 0时,图象经过二、四象限。强调:k,b与 一次函数y=kx+b 的图象与性质:k决定函数的增减性;b决定图象与y轴的交点位置当0时,y随着x的增大而增大,当0时,y随着x的增大而减小,当b0时,直线交于轴的正半轴,当b0时,直线交于轴的负半轴 当b0时,直线交经过原点,一次函数的图象如下图,请你将空填写完整。一次函数可以看作是由正比例函数平移个单位得到的,当0时,向 平移个单位;当0或ax+b0(x轴上方的图像)

2、的x的取值范围是ax+b0的解集;使函数值y0(x轴下方的图像)的x的取值范围是ax+b0的解集。3.二元一次方程与一次函数的联系(1)任意一个二元一次方程都可化成y=kx+b的形式,即使每个二元一次方程都对应一个一次函数,也对应一条直线。(2)直线y=kx+b的每一点的坐标均为这个二元一次方程的解。4.二元一次方程组与一次函数的关系(1)二元一次方程组中的每个方程可看作函数解析式。(2)求二元一次方程组的解可以看作求两个一次函数的交点坐标。函数专题 反比例函数1反比例函数:一般地,如果两个变量x、y之间的关系可以表示成y 或 (k为常数,k0)的形式,那么称y是x的反比例函数2. 反比例函数

3、的图象和性质k的符号k0k0图像的大致位置oyxyxo经过象限第 象限第 象限性质在每一象限内y随x的增大而 在每一象限内y随x的增大而 3的几何含义:反比例函数y (k0)中比例系数k的几何意义,即过双曲线y (k0)上任意一点p作x轴、y轴垂线,设垂足分别为a、b,则所得矩形oapb的面积为 .函数专题 二次函数1二次函数的定义:形如(a0,a,b,c为常数)的函数为二次函数2二次函数的图象及性质: 二次函数y=ax2 (a0)的图象是一条抛物线,其顶点是原点,对称轴是y轴;当a0时,抛物线开口向上,顶点是最低点;当a0时,抛物线开口向下,顶点是最高点;a越小,抛物线开口越大y=a(xh)

4、2k的对称轴是x=h,顶点坐标是(h,k)。 二次函数的图象是一条抛物线顶点为(,),对称轴x=;当a0时,抛物线开口向上,图象有最低点,且x,y随x的增大而增大,x,y随x的增大而减小;当a0时,抛物线开口向下,图象有最高点,且x,y随x的增大而减小,x,y随x的增大而增大 注意:分析二次函数增减性时,一定要以对称轴为分界线。首先要看所要分析的点是否是在对称轴同侧还是异侧,然后再根据具体情况分析其大小情况。 解题小诀窍:二次函数上两点坐标为(),(),即两点纵坐标相等,则其对称轴为直线。 当a0时,当x=时,函数有最小值;当a0时,当 x=时,函数有最大值。3.图象的平移:将二次函数y=ax

5、2 (a0)的图象进行平移,可得到y=ax2c,y=a(xh)2,y=a(xh)2k的图象 将y=ax2的图象向上(c0)或向下(c 0)平移|c|个单位,即可得到y=ax2c的图象其顶点是(0,c),形状、对称轴、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0)或向右(h0)平移|h|个单位,即可得到y=a(xh)2的图象其顶点是(h,0),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同 将y=ax2的图象向左(h0)或向下(k0)平移|k|个单位,即可得到y=a(xh)2 +k的图象,其顶点是(h,k),对称轴是直线x=h,形状、开口方向与抛物线y=ax2相同 注意

6、:二次函数y=ax2 与y=ax2 的图像关于x轴对称。平移的简记口诀是“上加下减,左加右减”。4.符号问题:1a的符号:a的符号由抛物线的开口方向决定抛物线开口向上,则a0;抛物线开口向下,则a02b的符号由对称轴决定,若对称轴是y轴,则b=0;若抛物线的顶点在y轴左侧,顶点的横坐标0,即0,则a、b为同号;若抛物线的顶点在y轴右侧,顶点的横坐标0,即0则a、b异号间“左同右异”3c的符号:c的符号由抛物线与y轴的交点位置确定若抛物线交y轴于正半,则c0,抛物线交y轴于负半轴则c0;若抛物线过原点,则c=04的符号:的符号由抛物线与x轴的交点个数决定若抛物线与x轴只有一个交点,则=0;有两个交点,则0没

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论