动量和能量观点的综合应用_第1页
动量和能量观点的综合应用_第2页
动量和能量观点的综合应用_第3页
动量和能量观点的综合应用_第4页
动量和能量观点的综合应用_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、23题动量和能量观点的综合应用考点一动量和能量观点的应用1.动量定理物体所受合外力的冲量等于物体的动量变化.即I = Ap或Ft = Ap或Ft = pi p2,它的表达式是一个矢量方程,即表示动量的变化方向与冲量的方向相同.2 .动量守恒定律:(1)内容:一个系统不受外力或者所受合外力为零,这个系统的总动量保持不变.即:pi= P2或 Api= Ap2.条件:系统不受外力或者所受外力的和为零;系统所受外力远小于系统的内力,可以 忽略不计;系统在某一个方向上所受的合外力为零,则该方向上动量守恒.3. 动能定理:合外力做的功等于物体动能的变化.(这里的合外力指物体受到的所有外力的合力,包括重力、

2、弹力、摩擦力、电场力、磁场力等 ).表达式为 W= AEk或W总=Ek2 Eki.4. 机械能守恒定律:在只有重力(或弹簧弹力)做功时,没有其他力做功或其他力做功的代数和为零,则系统机械 能守恒.18 / 191如图1所示,竖直平面内的光滑水平轨道1的左边与墙壁对接,右边与一个足够高的4光滑圆弧轨道平滑相连,木块A、B静置于光滑水平轨道上,A、B的质量分别为1.5kg和0.5kg.现让A以6m/s的速度水平向左运动,之后与 墙壁碰撞,碰撞的时间为0.3 s,碰后的速度大小变为 4 m/s.当A与B碰撞后会立即粘在一起 运动,g取10m/s2,求:图1(1) 在A与墙壁碰撞的过程中,墙壁对A的平

3、均作用力的大小;(2) A、B滑上圆弧轨道的最大高度.动量和能量综合题的解题思路1仔细审题,把握题意 在读题的过程中,必须仔细、认真,要收集题中的有用信息,弄清物理过程,建立清晰的物 理情景,充分挖掘题中的隐含条件,不放过任何一个细节2确定研究对象,进行受力分析和运动分析 有的题目可能会有多个研究对象,研究对象确定后,必须对它进行受力分析和运动分析,明 确其运动的可能性3思考解题途径,正确选用规律 根据物体的受力情况和运动情况,选择与它相适应的物理规律及题中给予的某种等量关系列 方程求解4检查解题过程,检验解题结果 检查过程并检验结果是否符合题意以及是否符合实际情况变式题组1 如图2所示,光滑

4、坡道顶端距水平面高度为h,质量为mi的小物块A从坡道顶端由静止滑下进入水平面,在坡道末端 O 点无机械能损失现将轻弹簧的一端固定在 M 处的墙上, 另一端与质量为 m2的物块B相连.A从坡道上滑下来后与 B碰撞的时间极短,碰后 A、B结 合在一起共同压缩弹簧.各处摩擦不计,重力加速度为g,求:图2(1) A在与B碰撞前瞬时速度 v的大小;A与B碰后瞬间的速度 v 的大小;(3) 弹簧被压缩到最短时的弹性势能Ep.2 .如图3所示,光滑水平面上有一具有光滑曲面的静止滑块B,可视为质点的小球 A从B的曲面上离地面高为 h处由静止释放,且A可以平稳地由B的曲面滑至水平地面. 已知A的 质量为m, B

5、的质量为3m,重力加速度为g,试求:图3(1) A刚从B上滑至地面时的速度大小;(2) 若A到地面后与地面上的固定挡板P碰撞,之后以原速率反弹,则 A返回B的曲面上能到达的最大高度为多少?考点二动力学、动量和能量观点的综合应用解决力学问题的三种解题思路1以牛顿运动定律为核心, 结合运动学公式解题, 适用于力与加速度的瞬时关系、 圆周运动 的力与运动的关系、匀变速运动的问题,这类问题关键要抓住力与运动之间的桥梁 加速 度2从动能定理、机械能守恒定律、能量守恒定律的角度解题,适用于单个物体、多个物体组 成的系统的受力和位移问题3从动量定理、 动量守恒定律的角度解题, 适用于单个物体、 多个物体组成

6、的系统的受力与 时间问题 (不涉及加速度 )及相互作用物体系统的碰撞、打击、爆炸、反冲等问题2如图 4 所示,质量为 m 的 b 球用长 h 的细绳悬挂于水平轨道 BC的出口 C处.质量也为m的小球a,从距BC高h的A处由静止释放, 沿光滑轨道 ABC 下滑,在 C 处与 b 球正碰并与 b 黏在一起已知 BC 轨道距地面的高度为0.5h,悬挂b球的细绳能承受的最大拉力为2.8mg.试问:图4(1) a 球与 b 球碰前瞬间的速度多大?(2) a、b 两球碰后, 细绳是否会断裂?若细绳断裂, 小球在 DE 水平面上的落点距 C 的水平距 离是多少?若细绳不断裂,小球最高将摆多高?力学规律的优选

7、策略1牛顿第二定律揭示了力的瞬时效应, 在研究某一物体所受力的瞬时作用与物体运动的关系 时,或者物体受恒力作用,且又直接涉及物体运动过程中的加速度问题时,应采用运动学公 式和牛顿第二定律2动量定理反映了力对事件的积累效应, 适用于不涉及物体运动过程中的加速度而涉及运动 时间的问题而涉3动能定理反映了力对空间的积累效应, 对于不涉及物体运动过程中的加速度和时间, 及力、位移、速度的问题,无论是恒力还是变力,一般都利用动能定理求解4如果物体只有重力或弹簧弹力做功而不涉及物体运动过程中的加速度和时间,此类问题则首先考虑用机械能守恒定律求解5在涉及相对位移问题时则优先考虑能量守恒定律,及系统克服摩擦力

8、所做的功等于系统机械能的减少量,系统的机械能转化为系统内能6在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,必须注意到一般过程中均含有系统机械能与其他形式能量之间的转化 这类问题由于作用时间都很短, 动量守恒定律一般大有作为式题组13. 如图5所示,一个半径 R= 1.00m的粗糙匚圆弧轨道,固定在竖直平面内,其下端切线是4水平的,距地面高度 h= 1.25m .在轨道末端放有质量mB= 0.30kg的小球B(视为质点),B左侧装有微型传感器,另一质量mA= 0.10kg的小球A(也视为质点)由轨道上端点从静止开始释放,运动到轨道最低处时,传感器显示示数为 2.6N , A与B发生正碰,碰后B小球

9、水平飞出,落到地面时的水平位移x= 0.80m,不计空气阻力,重力加速度取g= 10m/s2.求:图5(1)小球A在碰前克服摩擦力所做的功;(2)A与B碰撞过程中,系统损失的机械能.4. (2016丽水调研)如图6所示,水平地面上静止放置一辆小车A,质量mA= 4kg,上表面光滑,小车与地面间的摩擦力极小,可以忽略不计.可视为质点的物块B置于A的最右端,B的质量mB= 2kg.现对A施加一个水平向右的恒力 F = 10N , A运动一段时间后,小车左端固 定的挡板与B发生碰撞,碰撞时间极短,碰后 A、B粘合在一起,共同在 F的作用下继续运 动,碰撞后经时间t= 0.6s,二者的速度达到 V1=

10、 2m/s.求:图6(1) A 开始运动时加速度 a 的大小;(2) A、 B 碰撞后瞬间的共同速度 v 的大小;(3) A 的上表面长度 l.图1(1) 求物块与地面间的动摩擦因数也(2) 若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F;(3) 求物块在反向运动过程中克服摩擦力所做的功W.2. (2015绍兴市模拟)如图2所示,水平地面上固定有高为h的平台,台面上有固定的光滑坡道,坡道顶端距台面高也为h,坡道底端与台面相切小球A从坡道顶端由静止开始滑下,到达水平光滑的台面后与静止在台面上的小球 B 发生碰撞,并粘连在一起,共同沿台面滑行 并从台面边缘飞出,落地点与飞出点的水

11、平距离恰好为台高的一半两球均可视为质点,忽 略空气阻力,重力加速度为g.求:图2(1) 小球A刚滑至水平台面的速度VA;(2) A、B两球的质量之比mA : mB.3如图3所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块B静止在圆弧轨道的最低点,现将小滑块A从圆弧轨道的最高点无初速度释放,A与B碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R= 0.2m, A和B的质量相等,A和B整体与桌面之间的动摩擦因数尸0.2.取重力加速度g= 10m/s2.求:图3(1) 碰撞前瞬间A的速率v;(2) 碰撞后瞬间A和B整体的速率v;(3) A和B整体在桌面上滑动的距离I.4如图4

12、所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h.物块B质量是小球的5倍,置于粗糙的水平面上且位于O点正下方,物块与水平面间的动摩擦因数为 小现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生 正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为袪.小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t.图45 如图5所示,竖直墙面和水平地面均光滑,质量分别为m、3m的A、B两物体如图所示,其中A紧靠墙壁,A、B之间有质量不计的轻弹簧相连,现对B物体缓慢施加一个向左的力,对该物体做功为 W,使AB间弹簧被压缩但系统静止,

13、突然撤去向左推力解除压缩,求:图5(1) 从撤去外力到物块 A离开墙壁的过程中,墙壁对物块A的冲量;(2) 在物块A离开墙壁后的运动过程中,物块A、B速度的最小值.6. (2016浙江4月选考23)某同学设计了一个电磁推动加喷气推动的火箭发射装置,如图6所示竖直固定在绝缘底座上的两根长直光滑导轨,间距为L导轨间加有垂直导轨平面向下的匀强磁场B绝缘火箭支撑在导轨间,总质量为m,其中燃料质量为 m,燃料室中的金属棒EF电阻为R,并通过电刷与电阻可忽略的导轨良好接触.引燃火箭下方的推进剂,迅速 推动刚性金属棒 CD(电阻可忽略且和导轨接触良好 )向上运动,当回路 CEFDC面积减少量达到最大值 AS

14、,用时At,此过程激励出强电流,产生电磁推力加速火箭在At时间内,电阻R产生的焦耳热使燃料燃烧形成高温高压气体当燃烧室下方的可控喷气孔打开后.喷出燃 气进一步加速火箭.图6(1)求回路在At时间内感应电动势的平均值及通过金属棒EF的电荷量,并判断金属棒EF中的感应电流方向;经At时间火箭恰好脱离导轨,求火箭脱离时的速度vo;(不计空气阻力)(3) 火箭脱离导轨时,喷气孔打开,在极短的时间内喷射出质量为m的燃气,喷出的燃气相对喷气前火箭的速度为v,求喷气后火箭增加的速度Av(提示:可选喷气前的火箭为参考系)例 1.答案(1)50N(2)0.45m解析(1)设水平向右为正方向,当A与墙壁碰撞时根据

15、动量定理有Ft = mAVi mA( vi)解得 F= 50N设碰撞后A、B的共同速度为v,根据动量守恒定律有 mAVi = (mA + mB)vA、B在光滑圆形轨道上滑动时,机械能守恒,由机械能守恒定律得 12(mA+ mB)vm1 + m2= (mA + mB)gh 解得 h= 0.45m.变式题组1.答案阿石古2m1 gh一m1 + m2(3) A、B速度V减为零时,弹簧被压缩到最短,由机械能守恒定律得1 ,Ep= 2(mi+ m2)v22_ mi ghmi + m21 12. 答案(1)2 ,6gh (2)4h解析(1)设A刚滑至地面时速度大小为V1, B速度大小为v2,规定向右为正方

16、向,由水平方1 1向动量守恒得 3mv2 mv1= 0,由系统机械能守恒得 mgh= 2mv12 +x 3mv22联立以上两式解得:V1= ;*6ghv2= ;*6gh.(2) 从A与挡板碰后开始,到 A追上B到达最大高度h 并具有共同速度v,此过程根据系统 水平方向动量守恒得 mv1+ 3mv2= 4mv1根据系统机械能守恒得 mgh = 2X 4mv2+ mgh联立解得:h=如.4例2.答案(1) ,2gh (2)断裂为解析(1)设a球经C点时速度为vc,则由机械能守恒得mgh= mvc2,解得:vc = , 2gh即a球与b球碰前的速度为.2gh.(2)设碰后b球的速度为v,由动量守恒得

17、mvc = (m + m)v 故1v=?vc=;*2gh故落点距C的水平距离为x= vt =小球被细绳悬挂绕 O摆动时,若细绳拉力为 Ft,则2Ft 2mg= 2m*,解得 Ft = 3mgFT2.8mg,细绳会断裂,小球做平抛运动1设平抛的时间为t,则0.5h=gt2得t =小球最终落到地面距 C水平距离fh处.变式题组 3.答案(1)0.20J(2)0.384J解析在最低点,对A球由牛顿第二定律有a mAg= mAVA得 va = 4.00m/s1在A下落过程中,由动能定理有:mAgR Wf= qmAVA2A球在碰前克服摩擦力所做的功Wf = 0.20J.(2)碰后B球做平抛运动,在水平方

18、向有x= vb t1在竖直方向有h= ?gt2联立以上两式可得碰后B的速度vb = 1.6m/s对A、B碰撞过程,由动量守恒定律有mAVA= mAVA + mBVB 碰后A球的速度va = 0.80m/s,负号表示碰后 A球运动方向向左由能量守恒得,碰撞过程中系统损失的机械能:1E 损=qmAVA1mAVA 21qmBVB 2故 圧 损=0.384J在A与B碰撞的过程中,系统损失的机械能为0.384J.4.答案 (1)2.5m/s2(2)1 m/ s (3)0.45m解析(1)以A为研究对象,由牛顿第二定律有F = mAa 代入数据解得a= 2.5m/s2 对A、B碰撞后共同运动t = 0.6

19、s的过程,由动量定理得Ft = (mA+ mB)v1 (mA+ mB)v 代入数据解得 v= 1m/s (3) 设A、B发生碰撞前,A的速度为va,对A、B发生碰撞的过程,由动量守恒定律有mAVA= (mA+ mB)v 1A从开始运动到与 B发生碰撞前,由动能定理有Fl = -mAvA2由式,代入数据解得1= 0.45m.专题强化练1. 答案 (1)0.32(2)130N(3)9J1 1解析 由动能定理有卩mg=mv2 ?mvo2可得 尸0.32由动量定理有 FAt= mv mv可得F = 130N1(3) W= qmv 2= 9J.2. 答案 (1).2gh (2)1 : 3解析(1)小球从

20、坡道顶端滑至水平台面的过程中,由机械能守恒定律得1 mAgh = qmAVA2解得 va= 2gh(2)设两球碰撞后共同的速度为v,由动量守恒定律得mAVA= (mA+ mB)v粘在一起的两球飞出台面后做平抛运动,设运动时间为t,由运动学公式,在竖直方向上有1 2 h = qgt2在水平方向上有2=vt联立上述各式得 mA : mB= 1 : 3.3. 答案(1)2m/s(2)1 m/s (3)0.25m解析设滑块A的质量为m.(1)滑块由A到B的过程,根据机械能守恒定律1mgR= mv2得碰撞前瞬间 A的速率v= 2gR= 2m/s(2)碰撞过程中,根据动量守恒定律mv= 2mv一 1得碰撞

21、后瞬间 A和B整体的速率v=尹=1m/s1根据动能定理:2(2m)v 2= K2m)gl 得A和B整体沿水平桌面滑动的距离4.答案解析 设小球的质量为 m,运动到最低点与物块碰撞前的速度大小为v1,取小球运动到最低点重力势能为零,根据机械能守恒定律,有mgh= mv12解得v1 = ,2gh设碰撞后小球反弹的速度大小为VI,同理有 mgl6 = 2mviz 2解得 Vi =汽:.:-詈设碰后物块的速度大小为 V2,取水平向右为正方向,根据动量守恒定律,有mvi = mvi + 5mv2解得 V2=物块在水平面上滑行所受摩擦力的大小F= 5卩mJ)设物块在水平面上滑行的时间为t,根据动量定律有Ft = 0 5mv2解得t=右晋解法二:物块在水平面上滑行时做匀减速直线运动,从式以后可以换为以下内容:加速度F0 v2 1 2h(1) 6mW (2)0解析(1)压缩弹簧时外力做功全部转化为弹性势能.撤去外力后,物块B在弹力作用下做加速运动在弹簧恢复原长的过程中,系统的机械能守恒.设弹簧恢

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论