版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、【命题探究】2014版高考数学知识点讲座:考点8指数与对数的运算及函数(解析版)加(*)号的知识点为了解内容,供学有余力的学生学习使用一、考纲目标理解分数指数幂的概念,掌握有理指数幂的运算性质;掌握指数函数的概念、图像和性质;理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.二、知识梳理1根式的运算性质:当n为任意正整数时,()=a当n为奇数时,=a;当n为偶数时,=|a|=根式的基本性质:,(a0)2分数指数幂的运算性质: 3的图象和性质a10a 0 ,a 1 ,m 0 ,m 1,N0) 8两个常用的推论:,
2、 ( a, b 0且均不为1)9对数函数的性质:a10a0(转化法)(3) af(x)=bg(x)f(x)logma=g(x)logmb (取对数法)(4) logaf(x)=logbg(x)logaf(x)=logag(x)/logab(换底法)三、考点逐个突破1.指数、对数的运算法则例1 .计算:(1);(2); (3)解:(1)原式 (2)原式 (3)原式 例2. 设、为正数,且满足 (1)求证: (2)若,求、的值证明:(1)左边;解:(2)由得,由得 由得由得,代入得, 由、解得,从而 例3. 已知,求的值解:, , 又, 2.指对互化例4.已知,且,求的值解:由得:,即,; 同理可
3、得,由 得 ,3换底公式例5.设,且,求的最小值解:令 , 由得, ,即, , ,当时,4.比较大小例6(1)若,则,从小到大依次为 ; (2)若,且,都是正数,则,从小到大依次为 ; (3)设,且(,),则与的大小关系是( ) A B。 C。 D。解:(1)由得,故 (2)令,则, ,;同理可得:,(3)取,知选5.指数函数综合运用例7已知函数,求证:(1)函数在上为增函数;(2)方程没有负数根证明:(1)设,则,;,且,即,函数在上为增函数;另法:,函数在上为增函数;(2)假设是方程的负数根,且,则, 即, 当时,而由知 式不成立;当时,而式不成立综上所述,方程没有负数根6.对数函数综合运用例8.已知函数(且)求证:(1)函数的图象在轴的一侧; (2)函数图象上任意两点连线的斜率都大于证明:(1)由得:,当时,即函数的定义域为,此时函数的图象在轴的右侧;当时,即函数的定义域为,此时函数的图象在轴的左侧函数的图象在轴的一侧;(2)设、是函数图象上任
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州城市职业学院《女生健美操》2023-2024学年第一学期期末试卷
- 贵阳职业技术学院《药品与生物制品检测》2023-2024学年第一学期期末试卷
- 2025贵州省建筑安全员《B证》考试题库及答案
- 贵阳人文科技学院《室内空气污染监测与治理实验》2023-2024学年第一学期期末试卷
- 广州珠江职业技术学院《电路分析实验》2023-2024学年第一学期期末试卷
- 2025天津市安全员-C证考试题库
- 广州应用科技学院《女性文学与女性文化研究》2023-2024学年第一学期期末试卷
- 广州卫生职业技术学院《城乡规划设计基础II》2023-2024学年第一学期期末试卷
- 广州铁路职业技术学院《电化学与腐蚀原理》2023-2024学年第一学期期末试卷
- 2025云南省建筑安全员-C证考试(专职安全员)题库附答案
- 2024年06月上海广发银行上海分行社会招考(622)笔试历年参考题库附带答案详解
- TSG 51-2023 起重机械安全技术规程 含2024年第1号修改单
- 计算机科学导论
- 《正态分布理论及其应用研究》4200字(论文)
- GB/T 45086.1-2024车载定位系统技术要求及试验方法第1部分:卫星定位
- 浙江省杭州市钱塘区2023-2024学年四年级上学期英语期末试卷
- 《工程勘察设计收费标准》(2002年修订本)
- 1古诗文理解性默写(教师卷)
- 广东省广州市越秀区2021-2022学年九年级上学期期末道德与法治试题(含答案)
- 2024年一级消防工程师《消防安全技术综合能力》考试真题及答案解析
- 2024-2025学年六上科学期末综合检测卷(含答案)
评论
0/150
提交评论