




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、授课主题教学目的平行线1. 理解平行线的概念,掌握平行公理及其推论;2. 掌握平行线的判定方法及性质,并能进行简单的推理3. 掌握命题的定义,知道一个命题是由“题设”和“结论”两部分组成,对于给定的命 题,能找出它的题设和结论;教学重点平行线的判定及性质教学内容【知识梳理】要点一、平行线1 .定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a/ b.要点诠释:(1) 平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2) 有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3) 在同一平面内
2、,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于 上述任何一种位置关系.2 .平行公理:经过直线外一点,有且只有一条直线与这条直线平行.3 .推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 要点诠释:(1) 平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2) 公理中“有”说明存在;“只有”说明唯一.(3) “平行公理的推论”也叫平行线的传递性.要点二、直线平行的判定判定方法1 :同位角相等,两直线平行如上图,几何语言:/ 3=7 2 AB/ CD (同位角相等,两直线平行)判定方法2 :内错角相等,两直线平行如上图
3、,几何语言:/7 1 = 7 2 AB/ CD (内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行 如上图,几何语言:/74+7 2= 180AB/ CD (同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形要点三、平行线的性质性质1 :两直线平行,同位角相等; 性质2 :两直线平行,内错角相等; 性质3:两直线平行,同旁内角互补 要点诠释:(1) “同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提 直线平行”.(2) 从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.
4、要点四、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1) 求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条 平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的 距离处处相等.要点五、命题、定理、证明1. 命题:判断一件事情的语句,叫做命题.要点诠释:(1) 命题的结构:每个命题都由题设、 结论两部分组成, 题设是已知事项, 结论是由已知事项推出的事项(2) 命题的表达形式:“如果,那么.”,也可写成:“若,则”(3) 真命题与假命
5、题:真命题:题设成立结论一定成立的命题,叫做真命题.假命题:题设成立而不能保证结论一定成立的命题,叫做假命题2. 定理:定理是从真命题(公理或其他已被证明的定理)出发,经过推理证实得到的另一个真命题,定理 也可以作为继续推理的依据 3. 证明:在很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理过程叫做证明要点诠释:(1) 证明中的每一步推理都要有根据,不能“想当然”,这些根据可以是已知条件,学过的定义、基本事 实、定理等(2) 判断一个命题是正确的,必须经过严格的证明;判断一个命题是假命题,只需列举一个反例即可. 要点六、平移1.定义:在平面内,将一个图形沿某个方向移动一定的距
6、离,图形的这种移动叫做平移. 要点诠释:(1) 图形的平移的两要素:平移的方向与平移的距离.(2) 图形的平移不改变图形的形状与大小,只改变图形的位置2性质:图形的平移实质上是将图形上所有点沿同一方向移动相同的距离,平移不改变线段、角的大小,具体来说:(1) 平移后,对应线段平行且相等;(2) 平移后,对应角相等;(3) 平移后,对应点所连线段平行且相等;(4) 平移后,新图形与原图形是一对全等图形【典型例题】类型一、平行线例1 .下列说法正确的是 ()A .不相交的两条线段是平行线 .B. 不相交的两条直线是平行线 .C. 不相交的两条射线是平行线 .D. 在同一平面内,不相交的两条直线叫做
7、平行线.【答案】D例2 .在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行。其中正确的个)B . 2个 C. 3个 B正确的是:(1) (3).数为:(A. 1个【答案】【解析】【变式1】下列说法正确的个数是(1)(2)(3)(4)( 直线 a、b、c、d,如果 a / b、 两条直线被第三条直线所截,同旁内角的平分线互相垂直 两条直线被第三条直线所截,同位角相等 在同一平面内,如果两直线都垂直于同一条直线,B .2个 C. 3个 D . 4个)c / b、c / d,
8、贝U a / d.那么这两直线平行.A. 1个 【答案】B类型二、两直线平行的判定 例3.如图,给出下列四个条件:(1) AC= BD(3)Z ABD-/ CDB (4)Z ADB=Z CBD其中能使A . (1) (2)B . (3) (4) C . ( 2) (4)(2)Z DAC=Z BCAAD / BC的条件有 (D . (1) (3) (4)EJD【答案】C【变式2】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度 可能是()A .第一次向左拐30,第二次向右拐30B .第-次向右拐50,第二次向左拐130 C.第-次向右拐50,第二次向右拐130
9、D .第一次向左拐50,第二次向左拐130例 4.如图所示,已知/ B = 25,/ BCD = 45,/ CDE = 30,/ E = 10 .试说明 AB / EF 的理由.解法1 :如图所示,在/ BCD的内部作/ BCM = 25, 在/ CDE的内部作/ EDN = 10.解法1 :如图所示,在/ BCD的内部作/ BCM = 25,在/ CDE的内部作/ EDN = 10/ B = 25,/ E= 10 (已知),/ B =/ BCM , / E = / EDN(等量代换). AB / CM , EF / DN (内错角相等,两直线平行 ).又/ BCD = 45,/ CDE =
10、30 (已知), / DCM = 20,/ CDN = 20 (等式性质). / DCM =/ CDN (等量代换). CM / DN (内错角相等,两直线平行)./ AB / CM , EF/ DN(已证), AB / EF(平行线的传递性).解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点.1+ 2=180 ,求证:CD/EF ./ BCD = 45,./ NCB = 135 / B=25, / CNB = 180 - / NCB- / B = 20 (三角形的内角和等于 180 ). 又/ CDE = 30,./ EDM = 150 .又/ E = 10,/ EMD =
11、 180 - / EDM- / E= 20 (三角形的内角和等于 180 ). / CNB = / EMD (等量代换).所以AB / EF(内错角相等,两直线平行).【变式3】已知,如图,BE平分 ABD DE平分 CDB 请说明理由.解: AB / CD,理由如下:/ BE 平分/ ABD , DE 平分/ CDB ,/ ABD = 2/ 1,/ CDB = 2/ 2.又/ 1 + / 2= 90,/ ABD+ / CDB = 180AB / CD(同旁内角互补,两直线平行 ).【变式4】已知,如图, AB BD于B, CD BD于D,【答案】证明:/ AB BD于 B, CD BD于 D
12、, AB/ CD又1+ 2=180, AB/ EF. CD/EF.类型三、平行线的性质例5.如图所示,如果 AB II DF , DE II BC,且/ 1 = 65。.那么你能说出/ 2、/ 3、/ 4的度数吗?为什么.解: DE / BC ,/ 4 =/ 1 = 65 (两直线平行,内错角相等)./ 2+ / 1 = 180 (两直线平行,同旁内角互补 )./ 2 = 180 - / 1= 180 -65= 115.又 DF / AB(已知),/ 3 =/ 2(两直线平行,同位角相等)./ 3 = 115 (等量代换).【变式5】如图,已知h/J, I3/I4 ,且/ 1=48,则/ 2
13、=【变式6】如图所示,直线I1 / I2,点A、B在直线I2上,点C、D在直线 ABD的面积为S2,则()A . S1 S2B . S1= S2C. S1V S2D .不确定【答案】B类型四、命题例6.判断下列语句是不是命题,如果是命题,是正确的?还是错误的? 画直线AB :两条直线相交,有几个交点;若 a/ b, b/ c,则 a/ c;直角都相等;相等的角都是直角;如果两个角不相等,那么这两个角不是对顶角.【答案】不是命题;是命题;是正确的命题;是错误的命题.【变式8】把下列命题改写成“如果,那么”的形式.(1)两直线平行,同位角相等;(2)对顶角相等;(3 )同角的余角相等.【答案】解:
14、(1)如果两直线平行,那么同位角相等(2)如果两个角是对顶角,那么这两个角相等(3)如果有两个角是同一个角的余角,那么它们相等类型四、平移例7.(湖南益阳)如图所示,将 ABC沿直线AB向右平移后到达厶BDE的 位置,若/ CAB = 50,/ ABC = 100,则/ CBE 的度数为 .【答案】30【变式9】(上海静安区一模)如图所示,三角形 FDE经过怎样的平移可以得到三角形ABC( )A.沿EC的方向移动DB长B .沿BD的方向移动BD长C.沿EC的方向移动CD长D.沿BD的方向移动DC长【答案】A类型五、平行的性质与判定综合应用例 8、如图所示,AB / EF,那么/ BAC+ /
15、ACE+ / CEF =()A . 180 B . 270 C . 360D . 540 【答案】C【解析】过点C作CD / AB ,/ CD / AB , / BAC+ / ACD=180 (两直线平行,同旁内角互补 )又 EF / AB EF / CD . / DCE+ / CEF=180 (两直线平行,同旁内角互补 )又/ ACE =Z ACD+ / DCE=360 / BAC+ / ACE+ / CEF=Z BAC+ / ACD+ / DCE+ / CEF=180 +180【课后作业】一、选择题1. 下列说法中正确的有() 一条直线的平行线只有一条. 过一点与已知直线平行的直线只有一条
16、. 因为a/ b, c/ d,所以a/ d. 经过直线外一点有且只有一条直线与已知直线平行.A . 1个 B . 2个C . 3个 D . 4个2 .如果两个角的一边在同一直线上,另一边互相平行,则这两个角()A .相等B .互补C .互余D .相等或互补3 .如图,能够判定 DE / BC的条件是 ()A 上 DCE+ / DEC = 180 B.Z EDC = Z DCB能是()A 第-次向右拐40,第二次向右拐140B 第一次向右拐40,第二次向左拐40 C 第一次向左拐40,第二次向右拐140D 第-次向右拐140 ,第二次向左拐405 .如图所示,下列条件中,不能推出AB / CE,
17、OOO成立的条件是C Z BGF = Z DCB4 一辆汽车在广阔的草原上行驶,D CD 丄 AB , GF丄 AB 两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可ADB/A Z A = Z ACEB Z B = Z ACEC Z B=Z ECDD Z B+ / BCE = 180 6.(绍兴)学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张 半透明的纸得到的(如图, (1) (4):P7pP、i/4 /JrJ广 ri)111Hl从图中可知,小敏画平行线的依据有()两直线平行,同位角相等两直线平行,内错角相等同位角相等,两直线平行. 内错角相
18、等,两直线平行.A. B. C. D. 二、填空题7.在同一平面内的三条直线,它们的交点个数可能是 8 如图,DF 平分Z CDE , Z CDF = 55,Z C= 70,贝U/ 9规律探究:同一平面内有直线ai,a2,a3,aioo,若ai丄a2,a2 / a3,a3丄a4,按此规律,ai和aioo的位置是10 .已知两个角的两边分别平行,其中一个角为40,则另一个角的度数是11. 直线I同侧有三点A、B、C,如果A、B两点确定的直线I与B、C两点确定的直线I都与I平行,则A、B、C三点,其依据是12. 如图,AB丄EF于点G, CD丄EF于点H , GP平分/ EGB , HQ平分/ C
19、HF,则图中互相平行的直线有.三、解答题13. 如图,/ 1 = 60。,/ 2 = 60,/ 3 = 100,要使 AB / EF,/ 4应为多少度?说明理由.14 小敏有一块小画板(如图所示),她想知道它的上下边缘是否平行,而小敏身边只有一个量角器,你能 帮助她解决这一问题吗 ?15 .如图,把一张长芳形纸条ABCD沿AF折叠,已知/ ADB = 20,那么/ BAF为多少度时,才能使AB / BD?16 如图所示,由/ 1 = / 2, BD平分/ ABC,可推出哪两条线段平行,写出推理过程,如果推出另两条线 段平行,则应将以上两条件之一作如何改变?【答案与解析】一、选择题1. 【答案】
20、A【解析】只有正确,其它均错.2. 【答案】D3. 【答案】B【解析】内错角相等,两直线平行.4. 【答案】B5. 【答案】B【解析】/ B和/ACE不是两条直线被第三条直线所截所得到的角.6. 【答案】C【解析】解决本题关键是理解折叠的过程,图中的虚线与已知的直线垂直,过点P的折痕与虚线垂直.二、填空题7. 【答案】0或1或2或3个;&【答案】BC, DE;【解析】/ CFD = 180 70 55= 55,而/ FDE = Z CDF = 55,所以/ CFD = Z FDE.9. 【答案】ai / aioo;【解析】 为了方便,我们可以记为 aiX a2 / a3丄a4 / a5丄a6 / a7丄a8 / a9丄aio/ a97丄a98 / a99丄aioo,因为 ai丄 a2 / a3,所以 ai a3, 而 a3丄 a4,所以 ai / a4 / a5.同理得 a5/ a8 / a9, a9 / ai2 / ai3,,接着这样的 规律可以得 ai / a97 / aioo,所以ai / aioo.10. 【答案】4。或i4o11. 【答案】共线,平行公理;【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国房屋租赁行业发展趋势与前景展望战略研究报告
- 2025-2030中国微型电钻行业市场发展趋势与前景展望战略研究报告
- 嵌入式工业计算机机箱行业深度研究分析报告(2024-2030版)
- 心形相盒行业深度研究分析报告(2024-2030版)
- 不锈钢冲压制品行业深度研究分析报告(2024-2030版)
- 干湿两用平地拖行业深度研究分析报告(2024-2030版)
- GB/T 7573-2025纺织品水萃取液pH值的测定
- 2025届北京市顺义区杨镇一中高三适应性月考(十)物理试题含解析
- 内蒙古大学《应用数学与实践》2023-2024学年第二学期期末试卷
- 四川省青神县2025年初三下学期第一次联考试题物理试题含解析
- 冀教版二年级语文下册看图写话专项加深练习题含答案
- 海外专家部分项目简介
- 医疗美容主诊医师备案服务指南
- 焊接工艺评定及焊接工艺技术评定管理标准
- 基于SWOT分析的义乌市现代物流业发展研究
- 集装箱吊装方案(共5页)
- 基于自适应滤波对音频信号的处理详解
- 油浸式变压器工艺文件汇编
- 并网前设备电气试验继电保护整定通讯联调完整资料
- 南方科技大学机试样题练习南方科技大学样卷
- 北京广安门中医院门诊楼层分布图
评论
0/150
提交评论