自动控制原理复习总结PPT学习教案_第1页
自动控制原理复习总结PPT学习教案_第2页
自动控制原理复习总结PPT学习教案_第3页
自动控制原理复习总结PPT学习教案_第4页
自动控制原理复习总结PPT学习教案_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、会计学1 自动控制原理复习总结自动控制原理复习总结 反拉氏变换 控制系统的数学描述方法 系统 微分方程(组) 系统时间响应y(t) 传递函数 方块图信号流图 拉氏变换 第1页/共52页 q 利用物理、化学定律建立机理模型 q 实验方法获取数学模型(典型信号的输出响应) 一阶系统 单位脉冲响应g(t) 系统传递函数 系统的频率特性 系统传递函数 二阶系统(欠阻尼): 测试单位阶跃响应的指标 第2页/共52页 第3页/共52页 基本概念: 1、控制系统的组成 2、开环控制与闭环控制及反馈控制 3、定值控制与随动控制系统 控制原理复习总结 控制系统研究的主要内容: 1、系统分析:静态特性和动态特性

2、2、系统设计:根据要求的性能指标设计控制系统 对控制系统的基本要求: 稳定性 准确性:稳态误差小 快速性:动态响应快,调节时间短,超调量小 第4页/共52页 控制原理复习总结 第一章 概论 定值控制系统:输入是扰动f。 随动控制系统:输入是给定r。 区别在于给定值的形式。 e = x-z )( )( )( 1 sF sY sG )( )( )( 2 sR sY sG 第5页/共52页 主要内容: 1、基本概念 2*、描述系统动态模型的几种形式及相互转换 (1)微分方程 (2)传递函数 (3)方块图和信号流图 3、建立数学模型的步骤及简单对象的数学模 型 控制原理复习总结 * 为重点 第6页/共

3、52页 4、建立系统的数学模型的两种方法: 1、数学模型:控制系统各变量间关系的数学表达式。 2、动态过程与静态过程: (1)动态响应( 动态特性) 从初始状态终止状态 (2)静态响应( 静态特性) t , y()=2%。=5%(ts) 线性系统的方程是输入和输出量x、y及它们各阶导数的线性 形式。 3、线性系统与非线性系统:根据描述系统方程的形式划分的。 线性系统的性质: 可叠加性和均匀性(齐次性)。 本学期研究的主要是线性定常系统。 (1)机理分析法:(2)实验辨识法: 控制原理复习总结 第二章 控制系统的数学模型 第7页/共52页 控制原理复习总结 第二章 控制系统的数学模型 初始条件为

4、零 的线性定常系统: 输出的拉普拉 斯变换与输入的拉普拉斯变换之比。 定义: 基本性质 : 微分定理(初始条件为零) , ),( )( ),( )( 2 2 2 sFs dt tfd LssF dt tdf L 积分定理(初始条件为零), )()( 1 sFdttfL s 位移(滞后)定理 )()(sFetfL s 终值定理 )( lim )( lim 0 ssFtf st 初值定理 )( lim )( lim 0 ssFtf st 零点与极点: )3)(2( )1( )( ss sK sG例:例: 第8页/共52页 控制原理复习总结 第二章 控制系统的数学模型 二、传递函数 (1)比例环节

5、: )()(tkxty (2)一阶惯性(滞后)环节: kxy dt dy T 1 Ts k (3)一阶超前-滞后环节: x dt dx Tky dt dy T d 1 )1( Ts sTk d (4)二阶环节: kxcy dt dy b dt yd a 2 2 cbsas k 2 (5)积分环节: xdt F y 1 Fs 1 (6)PID环节: ) 1 ( dt dx Txdt T xky d i c ) 1 1(sT sT k d i c (7)纯滞后环节: )()( txty s e (8)带有纯滞后的一阶环节: )()( )( tKxty dt tdy T s e Ts K 1 k 第

6、9页/共52页 控制原理复习总结 第二章 控制系统的数学模型 应用函数方块描述信号在控制系统中传输过程的 图解表示法。 注意:画图的规范性:方块传递函数变量(拉氏 变换式)有向线段(箭头)符号 方块图: 第10页/共52页 1、串联: 2、并联: 串联环节总的传递函数等于各环节传递函数的乘积。 并联环节总的传递函数等于各环节传递函数之和。 3、反馈 )()()( )()(1 )( )( )( )(sZsXsE sHsG sG sX sY sW G(s):前向通道传递函数,H(s):反馈通道传递函数, G(s)H(s):开环传递函数 1+ G(s)H(s)=0:闭环特征方程。 单位反馈系统: )

7、(1 )( )( sG sG sW 负反馈: 控制原理复习总结 第二章 控制系统的数学模型 三、方块图 正反馈: )()()( )()(1 )( )(sZsXsE sHsG sG sW 第11页/共52页 1、在无函数方块的支路上,相同性质的点可以交换,不 同性质的点不可交换 控制原理复习总结 第二章 控制系统的数学模型 三、方块图 注意: (1)尽量利用相同性质的点可以交换这一点,避免不同性质 的点交换。 (2)相加、分支点需要跨越方块时,需要做相应变换,两者 交换规律找正好相反。 (3)交换后,利用串、并、反馈规律计算。 2、相加点后移,乘G;相加点前移加除G。 3、分支点后移,除G;分支

8、点前移,乘G。 第12页/共52页 控制原理复习总结 第二章 控制系统的数学模型 信号流图是一种表示系统各参数关系的一种图解法, 利用梅逊公式,很容易求出系统的等效传递函数。 梅逊公式 总增益:, 1 k kk PP 第13页/共52页 例1 某系统如图所示,求当R, N同时作用时输出Y的表达式。 G1G2 H1 H2 R N Y N -H1 -H2 G1 G2 1 1 1R Y 1 解(1)求Y/R,设N0。 22112 21 1HGGHG GG R Y 第14页/共52页 G1G2 H1 H2 R N Y N -H1 -H2 G1 G2 1 1 1R Y 1 (2)求Y/N,设R0。 N

9、-H1 -H2 G1 G2 1 1 Y 1 22112 221 1HGGHG HGG N Y 22112 22121 1HGGHG NHGGRGG Y 第15页/共52页 例2 描述系统的微分方程组如下,已知初始条件全部为零。 画出系统的方块图,并求解Y(s)/R(s)。 112 1122 211 xGxy xxGx xHRx 1/s X1 1 X G2 2 X H1 R 2 X 1/s 2 X G1 Y 求解 (1)方块图变换 (2)方块图转为信号流图梅逊公式求解 (3)利用梅逊公式对方块图求解 第16页/共52页 1/s X1 1 X G2 2 X H1 R 1/s 2 X G1 Y (1

10、)方块图化简 1/s 1+G2s H1 R 1/s G1 Y 1/s 1+G2s H1 R 1/s Y sG G 2 1 1 )( 1 12 21 1 sHGHss sGsG R Y 第17页/共52页 1/s X1 1 X G2 2 X H1 R 1/s 2 X G1 Y (2)转为信号流图梅逊公式求解 12 1 1 12 2 1HGR Y s H s G s G s R -H1 1/s G1 1/s 1 1 Y 1 2 X 1 X X1 2 X G2 )( 1 121 12 sHGHss SGsG 3条前向通路:sGPsGPsP/,/,/1 1322 2 1 2条回路: 12211 ,/H

11、GLsHL 第18页/共52页 控制原理复习总结 主要内容: 1、一阶惯性系统的单位阶跃响应,T、K的物理意义。 2*、标准二阶系统的单位阶跃响应,和n、d 的物理意义。 3、高阶闭环主导极点的概念 4* 、控制系统单位阶跃响应过程的质量指标,ts,tp,n 5、控制系统稳态误差 6 * 、劳斯稳定判据 7、常规PID调节器的控制规律(调节器的形式和作用的定性分析) * 为重点 第19页/共52页 控制原理复习总结 第三章 控制系统的时域分析方法 1)( )( )( Ts K sX sY sG 单位阶跃响应: )1 ()()( /1Tt eKsYLty 1、t=T时,系统从0上升到稳态值的63

12、.2% 2、在t0处曲线切线的斜率等于1/T 3、ts=4T,(=2%),ts=3T,(=5%) 4、y()=K(对标准传递函数) 1 0.632 63.2 斜率=1/Ty(t) 0 t T2T3T4T5T y(t)=1-exp(-t/T) 第20页/共52页 控制原理复习总结 第三章 控制系统的时域分析方法 2 2 2 2)( )( )( nn n ssX sY sG n:无阻尼自然频率,:阻尼系数(阻尼比)。 01 2 2,1 1 nd dn js 有阻尼自然频率 欠阻尼 一对共轭复根 衰减振荡 阻尼情况 单位阶跃响应 值 根的情况 根的数值 两个相等的负实根 临界阻尼 =1 02, 1

13、s 单调 1 2 2, 1 nn s 过阻尼 1 两个不等的负实根 单调上升 无阻尼 0 一对共轭纯虚根 n js 2, 1 等幅振荡 0 根具有正实部 发散振荡 第21页/共52页 控制原理复习总结 第三章 控制系统的时域分析方法 1、动态指标 (1) 峰值时间tp: 2 1 n p t 过渡过程曲线达到第一峰值所需要的时间。 (2) 超调量,%100 )( )()( y yty p %100 2 1 e (3) 衰减比n: 2 1 2 e B B n 在过渡过程曲线上,同方向上相邻两个波峰值 之比。 (4) 调节时间ts: %)2(4 4 %)5(3 3 TtTt n s n s 被控变量

14、进入稳态值土5或土2的范围内 所经历的时间。 2 2 2 2)( )( )( nn n ssX sY sG 第22页/共52页 三、以阶跃响应曲线形式表示的质量指标 控制原理复习总结 第三章 控制系统的时域分析方法 稳态误差或余差 )( )()(1 1 )(sR sHsG sE (1) 利用终值定理 )( lim )( lim 0 ssEte st 四、高阶系统的闭环主导极点 1、在S平面上,距离虚轴比较近,且周围没有其它的零极点 。 2、与其它闭环极点距虚轴的距离之比在5倍以上。 (2) 利用系统的型和稳态偏差系数判断。 第23页/共52页 表2 给定信号输入下的给定稳态误差esr 阶跃输入

15、r(t)=1 斜坡输入r(t)=t 抛物线输入r(t)=1/2t2 1 1 K Kp=K Kv=0 Ka=0 Kp= 0 K 1 Kv=K Ka=0 0 型系统 1 型系统 2 型系统 Kp= 00Kv= K 1 Ka=K )sT()sT)(sT(s )sT()sT)(sT(K )s(H)s(G n N m 111 111 21 21 Kp 稳态位置偏差系数 Kv 稳态速度偏差系数 Ka 稳态加速度偏差系数 )( )()(1 lim 0 sR sHsG s e s sr 第24页/共52页 控制原理复习总结 第三章 控制系统的时域分析方法 已知系统的特征方程式为: )0(0 1 1 10 nn

16、n nn aasasasa (1) 特征方程式的系数必须皆为正(必要条件)。 (2) 劳斯行列式第一列的系数也全为正, 则所有的根都具有负实部 。 (3) 第一列的系数符号改变的次数等于实部为正的根的个数。 (4) 第一列有零,用来代替,继续计算。一对纯虚根。利用上行 系数求出。临界稳定。 4321 4321 4321 7531 6420 4 3 2 1 dddd cccc bbbb aaaa aaaa s s s s s n n n n n ., ., ., 1 3131 2 1 2121 1 1 3151 2 1 2131 1 1 5041 2 1 3021 1 c cbbc d c cb

17、bc d b baab c b baab c a aaaa b a aaaa b 第25页/共52页 控制原理复习总结 第三章 控制系统的时域分析方法 )( )( 1 )( 0 dt tde Tdtte T teK d t i c ) 1 1(sT sT K d i c PID 不能消除余差 最基本的控制规律 Kc比例增益 c K P t i c c dtte T k teK 0 )()( ) 1 1 ( sT K i c 作用与Ti成反比 Ti是积分时间 消除余差 相位滞后 可能影响系统的稳定性 PI )( )( dt tde TteK dc )1 (sTK dc 超前作用,增加系统稳定性和

18、控制品质,放大噪声 不能消除余差 作用大小与Td成正比 Td微分时间 PD 第26页/共52页 R (s)Y (s) )( 2 ass K K1 例3:某电机调速系统的方块图。被控对象的结构已知, 但参数未知,需要通过实验确定,其中包括前置放大器增 益K1、机电时间常数a和增益K2。通过对系统施加单位阶 跃试验信号,得到系统的阶跃响应曲线。要求分析实验曲 线,确定系统模型参数K1、K2和a。 第27页/共52页 X (s)Y (s) )( 2 ass K K1 解 : , 1 . 0, 3)( p ty由图直接得到: %100 )( )()( y yty p %100 3 34 %3 .33

19、系统闭环传递函数: )( )( )( sX sY sG 2 2 21 Kass KK 2 2 2 1 2 nn n ss K 第28页/共52页 )( )( )( sX sY sG 2 2 2 1 2 nn n ss K 由 %,3 .33 e , 1 . 0 1 n p t 由 266.33 1 p n t 3 . 0 (ln ln 对照标准二阶系统,aK nn 2, 2 2 20,1107 2 aK,求得 X (s)Y (s) )( 2 ass K K1 由终值定理:3 1 2 lim)(lim)( 1 2 2 2 1 00 K sss K sssYy nn n ss 2 2 21 Kas

20、s KK 110720 3321 )( 2 ss sG 第29页/共52页 例4 系统如图。若使系统以 的频率振荡, 试确定振荡时的K值和a值。 sec/2 rad n R (s) Y (s) 12 ) 1( 23 sass sK q 由题可知,振荡时系统存在一对共轭虚根j2。 q 相当于劳斯行列式出现全零行。 系统闭环传递函数: )1()2( )1( )( )( 23 KsKass sK sR sY 闭环特征方程:0)1()2( 23 KsKass 第30页/共52页 0)1()2( 23 KsKass 劳斯行列式: 01 0 1 )2( 1 21 0 1 2 3 Ks a K Ks Kas

21、 Ks 令 0 1 )2( a K K 由辅助方程:2/ )1(01 2, 1 2 jaKjsKas 解得:解得: 求解联立方程: 0/ )1()2( 2/ )1( aKK aK 75. 0, 2 aK 求出: 第31页/共52页 控制原理复习总结 主要内容 1、根轨迹的基本概念 2、根轨迹的绘制 3、参数根轨迹 4、利用根轨迹分析和设计系统 必须掌握: 1、根轨迹的绘制 2、利用根轨迹分析、设计系统(求取特殊点的K值, 坐标,稳定范围) 第32页/共52页 控制原理复习总结 第四章 根轨迹分析方法 利用开环传递函数(开环零极点)求闭环系统的稳定性(闭 环极点)。 根据闭环特征方程: 0)()

22、(1 sHsG 闭环特征根满足: 1)()(, 11)()( sHsGsHsG (1) 相角条件 , 2 , 1 , 0)12(180)()( 0 11 kkpszs n i i m i i (2)幅值条件 m i i n i i zs ps K 1 1 利用相角条件,找出所有满足相角条件的s值,连成根轨迹。 确定某一特征根后,利用幅值条件,求出对应的K值。 第33页/共52页 控制原理复习总结 第四章 根轨迹分析方法 规则一、根轨迹的分支数:根轨迹的分支数等于开环极点数n 。 规则五、渐近线:根轨迹有n-m条渐进线。 规则四、实轴上的根轨迹:右边开环极点零点之和为奇数的 部分。 规则三、根轨

23、迹的对称性:根轨迹各分支是连续的,且对称 于实轴 规则二、根轨迹的起止:每条根轨迹都起始于开环极点,终 止于零点或无穷远点。 其相角为: 渐近线与实轴的交点为: mn zp n i m j ji 11 ,.2 , 1 , 0 180)12( 0 k mn k 第34页/共52页 二、 绘制根轨迹的基本规则 控制原理复习总结 第四章 根轨迹分析方法 根轨迹的分离点: 0 ds dk 分离点是方程式 的根。 规则七、根轨迹与虚轴的交点: 交点和相应的K值利用劳斯判据求出。 规则八、根轨迹的起始角: 在开环复数极点px 处,根轨迹的起始角为: n xi i i m j jx pszs 11 )()(

24、180 始始 在开环复数零点zy 处,根轨迹的终止角为 : )()(180 11 m yj j j n i iy zsps 止止 第35页/共52页 控制原理复习总结 第四章 根轨迹分析方法 关键写出等效系统的开环传递函数 。参数项写到分 子上,其余部分写在分母上,参变量移到K的位置,按规 则绘制参数根轨迹。 e GH)( 四、 求取特殊点的K值和求特殊点的坐标 求特殊点的坐标: 求取特殊点的K值: 相角条件。特殊点:虚轴、实轴 幅值条件。求K的稳定范围。 第36页/共52页 Im(s) Re(s)0 的根轨迹的根轨迹作作 4)1)(2( )( 2 0 sss K sG 根据规则一、二、三、有

25、四个极点 : p1=0, p2= -2, p3,4= -1j2 分析:n=4,m=0 。 该根轨迹共有四个分支, -2 P 1 P 2 P 3 P 4 根据规则四、实轴上存在 根轨迹是从-2到0之间。 终止于无穷远。 分别起始于p1, p2, p3,4, 第37页/共52页 根据规则五、n-m=4条渐近线 与实轴交点 : 1 4 4 11 mn ZP n i m j ji 渐近线相角分别为 : 135,45,135,45 Im(s) Re(s)0 -2 P 1 P 2 P 3 P 4 p1=0, p2= -2, p3,4= - 1j2 -1 ,.2 , 1 , 0 180)12( 0 k mn

26、 k 第38页/共52页 1 2 4 根据规则八、计算起始角和终止角。 复数极点p3= -1+j2的起始角: 421 180 始始 6 .116 1 2 1 arctg 4 .63 1 2 2 arctg 90 4 90 复数极点p4 :p 4= -1-j2 的起始角为90 p1=0, p2= -2, p3,4= - 1j2 Im(s) Re(s)0 -2 P 1 P 2 P 3 P 4 p3= -1j2 第39页/共52页 根据规则七、求出根轨迹与虚轴的交点 特征方程 : 01094 234 Kssss 4 65 K必对应于虚根 0 0 0 0104 91 0 5 . 6 465 1 2 1

27、3 2 3 4 s s Ks s Ks K 构造辅助方程:05 . 6 2 Ks 5 . 2 5 . 6 2 K s 求出: 58. 1js 4 65 K 时,第一列元素都为正值 j1.58,K=65/4 - j1.58,K=65/4 Im(s) Re(s)0 -2 P 1 P 2 P 3 P 4 4)1)(2( )( 2 0 sss K sG 第40页/共52页 根据规则六、求根轨迹的分离点(重根点) )1094( 234 ssssK ds dk 01018124 23 sss 0)1084)(1( 2 sss jss22. 11, 1 3,21 均是根轨迹的重根点 , 后者符合相角条件。

28、完整的根轨迹如图所示。 4)1)(2( )( 2 0 sss K sG j1.58,K=65/4 - j1.58,K=65/4 Im(s) Re(s)0 -2 P 1 P 2 P 3 P 4 0 1 1 180)12() )( )( ( k ps zs K n i i m i i 求出分离角,均是90。 第41页/共52页 控制原理复习总结 主要内容: 1、系统频率特性的基本概念 2 * 、频率特性两种图示法(极坐标图, 对数坐标图) 3 * 、奈魁斯特稳定判据 4 * 、稳定裕度 5、利用频率特性分析和设计系统 * 为重点 第42页/共52页 控制原理复习总结 第五章 频率特性分析方法 1、

29、线性定常系统对正弦输入信号的稳态响应与输入函数 之比称为频率特性。 输入 )sin()(sin)( tBytAtx 幅值比 ,幅频特性。 A B 相位差: ,相频特性。 2、用j代替传递函数中的s ,便得到了系统的频率特性G( j)。 模 为系统的幅频特性 (), )( jG A B 相角 为系统的相频特性 。 )( jG)( 3、最小相位系统与非最小相位系统 最小相位系统:零极点都在s左半平面; 非最小相位系统:右半平面存在零点或(和)极点 第43页/共52页 控制原理复习总结 第五章 频率特性分析方法 二、 典型环节的极坐标图 坐标: 实部,虚部 画法:求出频率特性的实部和虚部,或模和相角,求 =0,时的值,增加中间点值(穿过实、虚 轴点)。 三、 对数坐标图 两张图。 坐标:lg。 纵坐标:GHlg20幅频: (db) , 相频:相角(度)。 幅频:求出转折频率,画渐近线。 第44页/共52页 控制原理复习总结 第五章 频率特性分析方法 绘制一般系统的对数坐标图的步骤 : (1) 把系统频率特性改写成典型环节频率特性的乘积。 (2) 先不考虑K值。 (3) 找出各典型环节频率特性的转折频率。 (4) 确定坐标范围: 纵坐标:根据典型环节的幅频、相频特性( 低频、高频) 确定。 横坐标的分度范围,根据转折频率确定。 第45页

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论