江苏省盐城市阜宁县2015-2016学年高一上学期数学期末试卷(含答案)_第1页
江苏省盐城市阜宁县2015-2016学年高一上学期数学期末试卷(含答案)_第2页
江苏省盐城市阜宁县2015-2016学年高一上学期数学期末试卷(含答案)_第3页
江苏省盐城市阜宁县2015-2016学年高一上学期数学期末试卷(含答案)_第4页
江苏省盐城市阜宁县2015-2016学年高一上学期数学期末试卷(含答案)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.江苏省盐城市阜宁县2015-2016学年高一上学期数学期末试卷一、填空题:本大题共14小题,每小题5分,共70分.1已知集合A=1,0,1,B=x|1x2,xR,则AB=2已知扇形的圆心角=,半径r=3,则扇形的弧长l为3函数y=+lg(2x)的定义域是4已知角的终边经过点P(2,4),则sin=5已知|=2,|=3,且=2,则向量与的夹角的余弦值为6已知为第四象限,sin=,则tan=7已知幂函数f(x)=x的图象过点,则f(16)=8已知sin(x+)=,则sin(x)的值是9已知向量=(1,2),=(3,4),若()(2+k),则实数k的值为10将函数f(x)=sin(2x+)的图象向

2、右平移个单位,得到函数g(x)的图象,则函数g(x)的解析式为g(x)=11若函数f(x)=是(,0)(0,+)上是奇函数,则实数a的值为12若方程log3x+x=3的解所在的区间是(k,k+1),则整数k=13在平行四边形中,AB=4,AD=3,BAD=60,点E在BC上,且=2,F是DC的中点,则=14若关于x的方程4xm2x+1+2m=0有两个不相等的实数根,则实数m的取值范围为二、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.15已知和均为锐角,且sin=,cos=(1)求sin(+)的值;(2)求tan()的值16已知向量,满足|=2,|=1,向量=2,

3、=+3(1)若与的夹角为60,求|的值;(2)若,求向量与的夹角的值17已知函数f(x)=2sinxcosx+cos2x+3(xR)(1)写出函数f(x)的最小正周期;(2)求函数f(x)在区间0,上的最大值,并求取最大值时对应的x的值18某公司生产一款家用小型空气净化装置的固定成本为20000元,每生产一台装置需要增加投入200元,经市场调研,销售该装置的总收益(单位:元)满足函数R(x)=,其中x是该空气净化装置的月产量(单位:台)(1)将公司月利润f(x)表示月产量x的函数关系;(2)当月产量x为何值时,公司所获月利润最大?并求出月利润的最大值19已知向量=(3sinx,1)=(3cos

4、x,2),xR(1)若,求sin2x的值;(2)设向量=(,),记f(x)=(+)()+,x,求函数f(x)的值域20已知寒素f(x)=3x22mx1(mR)(1)若函数f(x)在区间(1,2)上是单调函数,求实数m的取值范围;(2)若函数f(x)在区间0,1上的最小值为g(m),求g(m)的表达式;(3)已知h(x)为奇函数,当x0时,h(x)=f(x)+2mx+1,若h(2x3)h(x+cos)对R恒成立,求实数x的取值范围2015-2016学年江苏省盐城市阜宁县高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.1已知集合A=1,0,1,B=x|1

5、x2,xR,则AB=0,1【考点】交集及其运算【专题】计算题;方程思想;定义法;集合【分析】利用交集定义求解【解答】解:集合A=1,0,1,B=x|1x2,xR,AB=0,1故答案为:0,1【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意定义法的合理运用2已知扇形的圆心角=,半径r=3,则扇形的弧长l为2【考点】弧长公式【专题】计算题;分析法;三角函数的求值【分析】利用弧长公式即可得出【解答】解:l=r=3=2故答案为:2【点评】本题考查了弧长公式,属于基础题3函数y=+lg(2x)的定义域是1,2)【考点】函数的定义域及其求法;对数函数的定义域【专题】计算题【分析】根据题意知根号

6、里的式子要大于等于0,且对数里的真数要为大于0得到y的定义域【解答】解:因为函数y=+lg(2x)要有意义,则x+10且2x0求出解集为1x2故答案为1,2)【点评】考查学生理解函数定义域及会求对数函数定义域的能力4已知角的终边经过点P(2,4),则sin=【考点】任意角的三角函数的定义【专题】计算题;方程思想;综合法;三角函数的求值【分析】由三角函数的定义可直接求得sin【解答】解:角的终边经过点P(2,4),x=2,y=4,r=2,sin=故答案为:【点评】本题考查任意角的三角函数的定义,属于基础题5已知|=2,|=3,且=2,则向量与的夹角的余弦值为【考点】平面向量数量积的运算【专题】对

7、应思想;综合法;平面向量及应用【分析】代入向量的夹角公式cos=计算【解答】解:cos=故答案为:【点评】本题考查了平面向量的夹角公式,是基础题6已知为第四象限,sin=,则tan=【考点】同角三角函数基本关系的运用【专题】转化思想;综合法;三角函数的求值【分析】由条件利用同角三角函数的基本关系,求得tan= 的值【解答】解:为第四象限,sin=,cos=,则tan=,故答案为:【点评】本题主要考查同角三角函数的基本关系,属于基础题7已知幂函数f(x)=x的图象过点,则f(16)=【考点】幂函数的性质【专题】函数的性质及应用【分析】根据题意,求出幂函数f(x)的解析式,再计算函数值f(16)【

8、解答】解:幂函数f(x)=x的图象过点,2=,解得=,f(x)=(x0);f(16)=故答案为:【点评】本题考查了幂函数的定义与性质的应用问题,解题时应用待定系数法求出函数的解析式,是基础题8已知sin(x+)=,则sin(x)的值是【考点】运用诱导公式化简求值【专题】转化思想;综合法;三角函数的求值【分析】由条件利用利用诱导公式求得所给的式子的值【解答】解:sin(x+)=,sin(x)=sin(x+)=sin(x+)=,故答案为:【点评】本题主要考查利用诱导公式求三角函数式的值,属于基础题9已知向量=(1,2),=(3,4),若()(2+k),则实数k的值为2【考点】平面向量共线(平行)的

9、坐标表示【专题】计算题;方程思想;向量法;平面向量及应用【分析】由已知向量的坐标求得(),(2+k)的坐标,然后由向量共线的坐标表示列式求得k值【解答】解: =(1,2),=(3,4),=(2,6),2+k=(2+3k,4k4),若()(2+k),则2(4k4)+6(2+3k)=0,解得:k=2故答案为:2【点评】共线问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别若=(a1,a2),=(b1,b2),则a1a2+b1b2=0,a1b2a2b1=0,是基础题10将函数f(x)=sin(2x+)的图象向右平移个单位,得到函数g(x)

10、的图象,则函数g(x)的解析式为g(x)=sin2x【考点】函数y=Asin(x+)的图象变换【专题】转化思想;综合法;三角函数的图像与性质【分析】由条件利用函数y=Asin(x+)的图象变换规律,得出结论【解答】解:将函数f(x)=sin(2x+)的图象向右平移个单位,得到函数g(x)=sin2(x)+=sin2x的图象,则函数g(x)的解析式为g(x)=sin2x,故答案为:sin2x【点评】本题主要考查函数y=Asin(x+)的图象变换规律,属于基础题11若函数f(x)=是(,0)(0,+)上是奇函数,则实数a的值为1【考点】函数奇偶性的性质【专题】计算题;方程思想;定义法;函数的性质及

11、应用【分析】根据函数奇偶性的定义,利用条件f(x)=f(x),建立方程关系进行求解即可【解答】解:f(x)=是(,0)(0,+)上是奇函数,f(x)=f(x),即=,即a+2x=a2x+1,则a=1,故答案为:1【点评】本题主要考查函数奇偶性的应用,根据条件建立方程关系是解决本题的关键比较基础12若方程log3x+x=3的解所在的区间是(k,k+1),则整数k=2【考点】函数的零点与方程根的关系;函数零点的判定定理【专题】计算题;数形结合【分析】方程的解在这个范围,则对应的函数的零点在这个范围,把原函数写出两个初等函数,即两个初等函数的交点在这个区间,结合两个函数的草图得到函数的交点的位置在(

12、1,3),再进行检验【解答】解:方程log3x+x=3的解所在的区间是(k,k+1),函数log3x=x+3的零点在(k,k+1)区间上,即函数f(x)=log3x与函数g(x)=x+3的交点在(k,k+1),根据两个基本函数的图象可知两个函数的交点一定在(1,3),当k=1时,m(x)=log3x+x3在(1,2)上不满足m(1)m(2)0,k=2,故答案为:2【点评】本题考查函数零点的检验,考查函数与对应的方程之间的关系,是一个比较典型的函数的零点的问题,注意解题过程中数形结合思想的应用13在平行四边形中,AB=4,AD=3,BAD=60,点E在BC上,且=2,F是DC的中点,则=2【考点

13、】平面向量数量积的运算【专题】对应思想;数形结合法;平面向量及应用【分析】建立平面直角坐标系,求出的坐标进行计算即可【解答】以AB为x轴,以A为原点建立平面直角坐标系,如图,则A(0,0),B(4,0),C(,),D(,),E(5,),F(,)=(5,),=(,),=5()+=2故答案为:2【点评】本题考查了平面向量的数量积运算,属于中档题14若关于x的方程4xm2x+1+2m=0有两个不相等的实数根,则实数m的取值范围为(1,2)【考点】根的存在性及根的个数判断【专题】综合题;方程思想;综合法;函数的性质及应用【分析】设2x=y,将方程化为关于y的一元二次方程有两个正数根解答【解答】解:设2

14、x=y,则y0,关于x的方程变为y22my+2m=0,此方程有两个不相等的正数根,所以,解得1m2,所以实数m的取值范围是(1,2)故答案为:(1,2)【点评】本题考查了一元二次方程根的分布问题;首先要将已知方程利用换元的方法转化为一元二次方程有两个正数根二、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.15已知和均为锐角,且sin=,cos=(1)求sin(+)的值;(2)求tan()的值【考点】两角和与差的正切函数;两角和与差的正弦函数【专题】转化思想;综合法;三角函数的求值【分析】(1)由条件利用同角三角函数的基本关系求得 cos 和sin 的值,两角的正弦公

15、式求得 sin(+)的值(2)由(1)求得tan 和tan 的值,再利用两角差的正切公式求得tan()的值【解答】解:(1)已知和均为锐角,且sin=,cos=,cos=,sin=,sin(+)=sincos+cossin=+=(2)由(1)可得tan=,tan=,tan()=【点评】本题主要考查同角三角函数的基本关系,两角差的正切公式的应用,属于基础题16已知向量,满足|=2,|=1,向量=2, =+3(1)若与的夹角为60,求|的值;(2)若,求向量与的夹角的值【考点】平面向量数量积的运算【专题】方程思想;综合法;平面向量及应用【分析】(1)求出,对|取平方计算;(2)由得=0,列出方程解

16、出cos,得到的值【解答】解:(1)=21cos60=1|2=22+2=3|=(2), =0,即(2)(+3)=22+532=8+10cos3=0cos=120【点评】本题考查了平面向量的数量积运算,夹角公式,属于基础题17已知函数f(x)=2sinxcosx+cos2x+3(xR)(1)写出函数f(x)的最小正周期;(2)求函数f(x)在区间0,上的最大值,并求取最大值时对应的x的值【考点】三角函数中的恒等变换应用;正弦函数的图象【专题】转化思想;综合法;三角函数的求值;三角函数的图像与性质【分析】(1)由条件利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性得出结论(2)由 x0,利

17、用正弦函数的定义域和值域,求得函数f(x)在区间0,上的最大值,以及取最大值时对应的x的值【解答】解:(1)函数f(x)=2sinxcosx+cos2x+3=sin2x+cos2x+3=2sin(2x+)+3,函数f(x)的最小正周期为=(2)x0,可得2x+,当2x+=时,函数f(x)取得最大值为5,此时,x=【点评】本题主要考查三角恒等变换,正弦函数的周期性、定义域和值域,属于中档题18某公司生产一款家用小型空气净化装置的固定成本为20000元,每生产一台装置需要增加投入200元,经市场调研,销售该装置的总收益(单位:元)满足函数R(x)=,其中x是该空气净化装置的月产量(单位:台)(1)

18、将公司月利润f(x)表示月产量x的函数关系;(2)当月产量x为何值时,公司所获月利润最大?并求出月利润的最大值【考点】函数模型的选择与应用【专题】应用题;方程思想;综合法;函数的性质及应用【分析】(1)利润=收益成本,由已知分两段当0x400时,和当x400时,求出利润函数的解析式;(2)分段求最大值,两者大者为所求利润最大值【解答】解:(1)当0x400时,f(x)=500x200x20000=+300x20000当x400时,f(x)=84500+100x200x20000=64500100x所以f(x)=(2)当0x400时,f(x)=+25000当x=300时,f(x)max=2500

19、0,当x400时,f(x)=64500100xf(400)=2450025000所以当x=300时,f(x)max=25000答:当产量x为300台时,公司获利润最大,最大利润为25000元 【点评】本题考查函数模型的应用:生活中利润最大化问题函数模型为分段函数,求分段函数的最值,应先求出函数在各部分的最值,然后取各部分的最值的最大值为整个函数的最大值,取各部分的最小者为整个函数的最小值19已知向量=(3sinx,1)=(3cosx,2),xR(1)若,求sin2x的值;(2)设向量=(,),记f(x)=(+)()+,x,求函数f(x)的值域【考点】平面向量数量积的运算;三角函数中的恒等变换应

20、用;正弦函数的图象【专题】函数思想;综合法;三角函数的求值【分析】(1)由,得=0,列出方程解出;(2)求出f(x)的解析式并化简得f(x)=2sin2x+sinx1,根据x得范围得出sinx的范围,利用二次函数的性质得出f(x)的最值【解答】解:(1), =9sinxcosx2=0,即sin2x2=0,解得sin2x=(2)f(x)=(22)+=(9sin2x+19cos2x4)+sinx+=sin2xcos2x+sinx=2sin2x+sinx1=2(sinx+)2x,sinx1,1,当sinx=,f(x)取得最小值,当sinx=1时,f(x)取得最大值2函数f(x)的值域是,2【点评】本题考查了三角函数的恒等变换与化简求值,平面向量的数量积运算,正弦函数的性质,属于中档题20已知寒素f(x)=3x22mx1(mR)(1)若函数f(x)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论