2020年中考数学三轮易错复习:专题12-类比、探究类综合题之全等知识(总44页)_第1页
2020年中考数学三轮易错复习:专题12-类比、探究类综合题之全等知识(总44页)_第2页
2020年中考数学三轮易错复习:专题12-类比、探究类综合题之全等知识(总44页)_第3页
2020年中考数学三轮易错复习:专题12-类比、探究类综合题之全等知识(总44页)_第4页
2020年中考数学三轮易错复习:专题12-类比、探究类综合题之全等知识(总44页)_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2020年中考数学三轮易错复习:专题12 类比、探究类综合题之全等知识【例1】(2019济源一模)在菱形 ABCD 中,ABC=60,点P是射线BD上一动点,以AP为边向右侧作等边APE,点 E 的位置随着点 P 的位置变化而变化(1)探索发现如图1,当点E在菱形ABCD 内部或边上时,连接CE填空:BP与CE的数量关系是 ,CE 与 AD 的位置关系是(2)归纳证明当点E在菱形 ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理)(3)拓展应用如图4,当点P在线段 BD 的延长线上时,连接BE,若AB=,BE=,请直

2、接写出四边形 ADPE 的面积 图1 图2 图3 图4【变式1-1】(2019周口二模)在ABC中,ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB(1)如图1,图2,若ABC为等腰直角三角形,问题初现:当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是_,数量关系是_;深入探究:当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,ACB90,若当点M为线段AB上不与点A重合的一个动点,MPCM交线段BN于点P,且CBA=45,BC=,当B

3、M=_时,BP的最大值为_图1图2图3【例2】(2018洛阳三模)在正方形ABCD中,动点E、F分别从D、C两点出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边CD上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动

4、,使得点P也随之运动,请你画出点P运动路径的草图若AD=2,试求出线段CP的最大值【变式2-1】(2019西华县一模)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF连接DE,过点E作EGDE,使EG=DE,连接FG,FC(1)请判断:FG与CE的数量关系是 ,位置关系是 ;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断图1 图2 图3强化精炼:1.(2019河南南阳一模)我们定义:如

5、图1,在ABC中,把AB绕点A顺时针旋转(0180)得到AB,把AC绕点A逆时针旋转得到AC,连接BC,当+=180时,我们称ABC是ABC的“旋补三角形”,ABC边BC上的中线AD是ABC的旋补中线,点A叫旋补中心.特例感知:(1)在图2,图3中,ABC是ABC的“旋补三角形”,ABC边BC上的中线AD是ABC的旋补中线,如图2,当ABC是等边三角形时,AD与BC的数量关系是如图3,当BAC=90,BC=8时,则AD的长为猜想论证:(2)如图1,当ABC是任意三角形时,猜想AD与BC的数量关系,并给予证明.2.(2019郑州外国语测试)已知如图1所示,在ABC中,ACB=90,AC=BC,点

6、D在AB上,DEAB交BC于E,点F是AE的中点,(1)写出线段FD与线段FC的关系并证明;(2)如图2所示,将BDE绕点B逆时针旋转(090),其它条件不变,线段FD与线段FC的关系是否变化,写出结论并证明;(3)将BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.3.(2019偃师一模)特殊:(1)如图 1,在等腰直角三角形 ABC 中,ACB=90作 CM平分ACB 交 AB 于点 M,点 D 为射线 CM 上一点,以点 C 为旋转中心将线段 CD 逆时针旋转 90得到线段 CE,连接 DE 交射线 CB 于点 F,连接 BD, BE填空:线段 BD,BE 的数

7、量关系为 ;线段 BC,DE 的位置关系为 一般:(2)如图 2,在等腰三角形 ABC 中,ACB=,作 CM 平分ACB 交AB 于点 M,点 D 为ABC 外部射线 CM 上一点,以点 C 为旋转中心将线段CD 逆时针旋转 度得到线段 CE,连接 DE,BD,BE请判断(1)中的结论是否成立,请说明理由特殊:(3)如图 3,在等边三角形 ABC 中,作 BM 平分ABC 交 AC 于点 M,点 D 为射线 BM 上一点,以点 B 为旋转中心将线段 BD 逆时针旋转 60得到线段 BE,连接 DE 交射线 BA 于点 F,连接 AD,AE若 AB=4,当ADM 与AFD 全等时,请直接写出

8、DE 的值图1 图2 图34.(2019省实验一模)观察猜想(1)如图,在RtABC中,BAC90,ABAC3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90得到线段DF,连接BF,BE与BF的位置关系是 ,BE+BF ;探究证明(2)在(1)中,如果将点D沿AB方向移动,使AD1,其余条件不变,如图,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸(3)如图,在ABC中,ABAC,BACa,点D在边BA的延长线上,BDn,连接DE,将线段DE绕着点D顺时针旋转,旋转角EDFa,连接BF,则BE+BF的值是多少?请用含有n,a的式子直接

9、写出结论图1 图2 图35.(2019濮阳二模)在ABC中,ACBC,ACB,点D为直线BC上一动点,过点D作DFAC交AB于点F,将AD绕点D顺时针旋转得到ED,连接BE(1)特例猜想如图1,当90时,试猜想:AF与BE的数量关系是 ;ABE ;(2)拓展探究如图(2),当090时,请判断AF与BE的数量关系及ABE的度数,并说明理由(3)解决问题如图(3),在ABC中,ACBC,AB8,ACB,点D在射线BC上,将AD绕点D顺时针旋转得到ED,连接BE,当BD3CD时,请直接写出BE的长度图1 图2 图36.(2019开封二模)问题发现如图1,ABC是等边三角形,点D是边AD上的一点,过点

10、D作DEAC交AC于E,则线段BD与CE有何数量关系?拓展探究如图2,将ADE绕点A逆时针旋转角(0360),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明问题解决如果ABC的边长等于2,AD2,直接写出当ADE旋转到DE与AC所在的直线垂直时BD的长图1 图2 备用图7.(2019安阳二模)(1)问题发现:如图1,在四边形ABCD中,ABDC,E是BC的中点,若AE是BAD的平分线,则AB,AD,DC之间的数量关系为 (2)问题探究:如图2,在四边形ABCD中,ABDC,E是BC的中点,点F是DC的延长线上一点,若AE是BAF的平分线,试探究AB,AF,CF之间的数量关系,并证

11、明你的结论(3)问题解决:如图3,ABCD,点E在线段BC上,且BE:EC3:4点F在线段AE上,且EFDEAB,直接写出AB,DF,CD之间的数量关系图1 图2 图38.(2019中原名校大联考)如图1,在RtABC中,BAC90,ABAC,点D,E分别在边AB,AC上,ADAE,连接DC,BE,点P为DC的中点,(1)【观察猜想】图1中,线段AP与BE的数量关系是 ,位置关系是 (2)【探究证明】把ADE绕点A逆时针旋转到图2的位置,(1)中的猜想是否仍然成立?若成立请证明,否请说明理由;(3)【拓展延伸】把ADE绕点A在平面内自由旋转,若AD4,AB10,请直接写出线段AP长度的最大值和

12、最小值图1 图29.(2018新乡一模)如图1,在ABC与ADE中,AB=AC,AD=AE,A是公共角.(1)BD与CE的数量关系是: ;(2)把图1的ABC绕点A旋转一定的角度,得到如图2所示的图形.求证:BDCE;BD与CE所在直线的夹角与DAE的数量关系是什么?说明理由.(3)若AD=10,AB=6,把图1中的ABC绕点A顺时针旋转度(0360)直接写出BD长度的取值范围.图1 图210.(2019河南模拟)【问题探索】(1)如图1,在RtABC中,ACB=90,AC=BC,点D,E分别在AC、BC边上,DC=CE,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM

13、、PN、MN. 探索BE与MN的数量关系. 聪明的小华推理发现PM、PN的关系为,最后推理得到BE与MN的数量关系为.【深入探究】(2)将DEC绕点C逆时针旋转到如图2的位置,判断(1)中的结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;2020年中考数学三轮易错复习:专题12 类比、探究类综合题之全等知识【例1】(2019济源一模)在菱形 ABCD 中,ABC=60,点P是射线BD上一动点,以AP为边向右侧作等边APE,点 E 的位置随着点 P 的位置变化而变化(1)探索发现如图1,当点E在菱形ABCD 内部或边上时,连接CE填空:BP与CE的数量关系是 ,CE 与 AD

14、的位置关系是(2)归纳证明当点E在菱形 ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理)(3)拓展应用如图4,当点P在线段 BD 的延长线上时,连接BE,若AB=,BE=,请直接写出四边形 ADPE 的面积 图1 图2 图3 图4【答案】(1)BP=CE,CEAD;(2)(3)见解析.【解析】解:(1)连接AC,延长CE至AD,四边形ABCD是菱形,ABC=60,BAD=120,BAC=60,CAD=60,ABC是等边三角形,AB=AC,APE是等边三角形,AP=AE,PAE=60,BAP=CAE,BAPCAE,B

15、P=CE,ABC=60,ABP=30,BAPCAE,ABP=ACE=30,CAD=60,ACE+CAD=90,即CDAD.(2)结论仍然成立,理由如下:(以图2为例)连接AC,设CE与AD交于点H,四边形ABCD是菱形,ABC=60,ABC和ACD是等边三角形,ABD=CBD=30,AB=AC,BAC=60,APE是等边三角形,AP=AE,PAE=60,BAP=CAE,BAPCAE,BP=CE,ACE=ABP=30,CAH=60,AHC=90,即CEAD;(3)连接AC交BD于O,连接CE,由(2)知,CEBC,AB=,BE=,在RtBCF中,由勾股定理得:CE=8,由BAPCAE,得:BP=

16、CE,BD=6,DP=BPBD=2,AO=,在RtAOP中,由勾股定理得:AP=,S=SADP+SAPE=8.【变式1-1】(2019周口二模)在ABC中,ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB(1)如图1,图2,若ABC为等腰直角三角形,问题初现:当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是_,数量关系是_;深入探究:当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,ACB90,若当点M为线段AB上不与点A重合的一个动点

17、,MPCM交线段BN于点P,且CBA=45,BC=,当BM=_时,BP的最大值为_图1图2图3【答案】(1)BNAM,BN=AM;(2)见解析,(3)2, 1.【解析】解:(1)由AC=BC,ACM=BCN,CM=CN,可证ACMBCN,BN=AM,A=CBN=45,ABN=90,即BNAM.(2)BNAM,BN=AM;理由如下:ABC是等腰直角三角形,AC=BC,A=ABC=45,ACB=90,同理,NCM=90,NC=MC,ACM=BCN,ACMBCN,BN=AM,A=CBN=45,ABN=90,即BNAM.(3)过C作CGBC交BA的延长线于G,过C作CHAB于H,如图所示,易证GCMB

18、CN,由(2)知,BNAB,CHMMBP,,即,设BM=x,则BP=,当BM=2时,BP取最小值,最小值为1.【例2】(2018洛阳三模)在正方形ABCD中,动点E、F分别从D、C两点出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边CD上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F

19、分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图若AD=2,试求出线段CP的最大值【答案】见解析.【解析】解:(1)AE=DF,AEDF,理由如下:四边形ABCD是正方形,AD=DC,ADE=DCF=90,由题意知:DE=CF,ADEDCF,AE=DF,DAE=FDC,ADE=90,ADP+CDF=90,ADP+DAE=90,APD=18090=90,AEDF;(2)(1)中的结论还成立,CE:CD=或2,理由如下:如图,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得:AC=CE=a,则CE:CD=a:a=;如图

20、,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:AC=AE=a,四边形ABCD是正方形,ADC=90,即ADCE,DE=CD=a,CE:CD=2a:a=2;故,CE:CD=或2;(3)点P在运动中APD=90,点P的路径是以AD为直径的圆,如图,设AD的中点为Q,连接CQ并延长交圆Q于点P,此时CP的长度最大,在RtQDC中,由勾股定理得:QC=,CP=QC+QP=+1,即线段CP的最大值是+1【变式2-1】(2019西华县一模)如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF连接DE,过点E作EGDE,使EG=DE,连接FG,FC(1)请判断:FG与CE

21、的数量关系是 ,位置关系是 ;(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断图1 图2 图3【答案】(1)FG=CE,FGCE;(2)(3)见解析【解析】解:(1)FG=CE,FGCE;BF=CE,BC=CD,FBC=DCE=90,BCFCDE,DEC=CFB,CFB+FCB=90,DEC +FCB=90,即CFDE,DEEG,EGCF,EG=DE=CF,四边形FCEG是平行四边形,FG=CE,FGCE;(2)

22、BF=CE,BC=CD,FBC=DCE=90,BCFCDE,DEC=CFB,CF=DE,CFB+FCB=90,DEC +FCB=90,即CFDE,DEEG,EGCF,EG=DE=CF,四边形FCEG是平行四边形,FG=CE,FGCE;(3)成立由上可证:CBFDCE,得:BCF=CDE,CF=DE,EG=DE,CF=EG,DEEGDEC+CEG=90CDE+DEC=90CDE=CEG,BCF=CEG,CFEG,四边形CEGF平行四边形,FGCE,FG=CE强化精炼:1.(2019河南南阳一模)我们定义:如图1,在ABC中,把AB绕点A顺时针旋转(0180)得到AB,把AC绕点A逆时针旋转得到A

23、C,连接BC,当+=180时,我们称ABC是ABC的“旋补三角形”,ABC边BC上的中线AD是ABC的旋补中线,点A叫旋补中心.特例感知:(1)在图2,图3中,ABC是ABC的“旋补三角形”,ABC边BC上的中线AD是ABC的旋补中线,如图2,当ABC是等边三角形时,AD与BC的数量关系是如图3,当BAC=90,BC=8时,则AD的长为猜想论证:(2)如图1,当ABC是任意三角形时,猜想AD与BC的数量关系,并给予证明.【分析】(1)由ABC是等边三角形,得AB=BC=AC=AB=AC,BAC=60,BAC+BAC=180,得B=C=30,即BC=2AD;可利用“直角三角形中,斜边的中线等于斜

24、边的一半”,证得:BC=2AD,AD=4;(2)BC=2AD,利用倍长中线构造全等三角形,延长AD至M使DM=AD,连接BM,CM,证得ABCBAM,得BC=AM,BC=2AD.【解析】解:(1)ABC是等边三角形,AB=BC=AC=AB=AC,BAC=60,DB=DC,ADBC,BAC+BAC=180,BAC=120,B=C=30,BC=2AD,即:答案为BC=2AD.BAC=90,BAC+BAC=180,BAC=BAC=90AB=AB,AC=AC,BACBAC,BC=BC,BD=DC,BC=2AD,BC=8,AD=4;(2)结论:BC=2AD,理由如下:如图,延长长AD至M使DM=AD,连

25、接BM,CM,AD=DM,BD=DC,四边形ACMB是平行四边形,AC=BM=AC,BAC+BAC=180,ABM+BAC=180,BAC=ABM,AB=AB,BACABM,BC=AM,即BC=2AD.2.(2019郑州外国语测试)已知如图1所示,在ABC中,ACB=90,AC=BC,点D在AB上,DEAB交BC于E,点F是AE的中点,(1)写出线段FD与线段FC的关系并证明;(2)如图2所示,将BDE绕点B逆时针旋转(090),其它条件不变,线段FD与线段FC的关系是否变化,写出结论并证明;(3)将BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.【答案】见解析.【

26、解析】解:(1)FD=FC,FDFC,理由如下:由题意知:ADE=ACE=90,AF=EF,DF=AF=EF=CF,FAD=FDA,FAC=FCA,DFE=FDA+FAD=2FAD,EFC=2FAC,CA=CB,ACB=90,BAC=B=45,DFC=EFD+EFC=2(FAD+FAC)=90,FD=FC,FDFC.(2)结论不变,理由如下:延长AC至M使得CM=AC,延长ED至N,使DN=DE,连接BN、BM、EM、AN,延长ME交AN于H,交AB于O,如图所示,BCAM,AC=CM,AB=BM,同理得:BE=BN,ABM=EBN,NBA=EBM,ABNMBE,AN=EM,BAN=BME,A

27、F=FE,AC=CM,CF=EM,CFEM,同理,FD=AN,FDAN,FD=FC,BME+BOM=90,BOM=AOH,BAN+AOH=90,AHO=90,即ANMH,FDFC.(3)由题意知,当点E落在线段AB上时,BF的长最大,如图所示, 此时BF=3,当点E落在AB的延长线上时,BF的长最小,如图所示,此时,BF=,BF3.3.(2019偃师一模)特殊:(1)如图 1,在等腰直角三角形 ABC 中,ACB=90作 CM平分ACB 交 AB 于点 M,点 D 为射线 CM 上一点,以点 C 为旋转中心将线段 CD 逆时针旋转 90得到线段 CE,连接 DE 交射线 CB 于点 F,连接

28、BD, BE填空:线段 BD,BE 的数量关系为 ;线段 BC,DE 的位置关系为 一般:(2)如图 2,在等腰三角形 ABC 中,ACB=,作 CM 平分ACB 交AB 于点 M,点 D 为ABC 外部射线 CM 上一点,以点 C 为旋转中心将线段CD 逆时针旋转 度得到线段 CE,连接 DE,BD,BE请判断(1)中的结论是否成立,请说明理由特殊:(3)如图 3,在等边三角形 ABC 中,作 BM 平分ABC 交 AC 于点 M,点 D 为射线 BM 上一点,以点 B 为旋转中心将线段 BD 逆时针旋转 60得到线段 BE,连接 DE 交射线 BA 于点 F,连接 AD,AE若 AB=4,

29、当ADM 与AFD 全等时,请直接写出 DE 的值图1 图2 图3【答案】(1)BD=BE,BCDE;(2)(3)见解析.【解析】解:(1)由题意知:ACM=BCM=45,由旋转知,DCE=90,CD=CE,ECB=DCB=45,BC=BC,BCDBCE,BD=BE,CD=CE,BC是线段DE的垂直平分线,BCDE,(2)成立,理由如下,CM平分ACB,ACB=,ACM=BCM=,由旋转知,DCE=,CD=CE,BCD=BCE=又BC=BC,BCDBCE,BD=BE,CD=CE,BC是线段DE的垂直平分线,BCDE.(3)如图3,可证得:ABE=ABD =30,ABDE,由ADMADF,得:F

30、AD=MAD=30,AF=BF=2,DE=2DF,在RtADF中,DF=AFtanDAF=,即DE=.如下图所示,同理,得FBD=30,AB=AD=4,ADF=ADM=30,DE=2DF=4,综上所述,DE的长为:,4.4.(2019省实验一模)观察猜想(1)如图,在RtABC中,BAC90,ABAC3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90得到线段DF,连接BF,BE与BF的位置关系是 ,BE+BF ;探究证明(2)在(1)中,如果将点D沿AB方向移动,使AD1,其余条件不变,如图,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展

31、延伸(3)如图,在ABC中,ABAC,BACa,点D在边BA的延长线上,BDn,连接DE,将线段DE绕着点D顺时针旋转,旋转角EDFa,连接BF,则BE+BF的值是多少?请用含有n,a的式子直接写出结论图1 图2 图3【答案】(1)BFBE;BC;(2)(3)见解析. 【解析】解:(1)EAFBAC90,EAFBAEBACBAE,BAFCAE,AFAE,ABAC,BAFCAE,ABFC,BFCE,ABAC,BAC90,ABCC45,FBEABF+ABC90,BCBE+ECBE+BF,故答案为: BFBE,BC(2)过D作DHAC交BC于H, DHAC,BDHA90,DBH是等腰直角三角形,由(

32、1)可证得:BFBE,BF+BEBH,ABAC3,AD1,BDDH2,BH2,BF+BEBH2;(3)过D作DHAC交BC的延长线于H,作DMBC于M ACDH,ACHH,BDHBAC,ABAC,ABCACBDBHH,DBDH,EDFBDH,BDFHDE,DFDE,DBDH,BDFHDE,BFEH,BF+BEEH+BEBH,DBDH,DMBH,BMMH,BDMHDM,BMMHBDsinBF+BEBH2nsin5.(2019濮阳二模)在ABC中,ACBC,ACB,点D为直线BC上一动点,过点D作DFAC交AB于点F,将AD绕点D顺时针旋转得到ED,连接BE(1)特例猜想如图1,当90时,试猜想:

33、AF与BE的数量关系是 ;ABE ;(2)拓展探究如图(2),当090时,请判断AF与BE的数量关系及ABE的度数,并说明理由(3)解决问题如图(3),在ABC中,ACBC,AB8,ACB,点D在射线BC上,将AD绕点D顺时针旋转得到ED,连接BE,当BD3CD时,请直接写出BE的长度图1 图2 图3【答案】(1)AFBF,90;(2)(3)见解析.【解析】解:(1)设AB交DE于OACB90,ACBC,ABC45,DFAC,FDBC90,DFBDBF45,DFDB,ADEFDB90,ADFEDB,DADE,ADFEDB,AFBE,DAFE,AODEOB,ABEADO90,所以答案为AFBF,

34、90(2)结论:AFBE,ABE理由如下:DFACACBFDB,CABDFB,ACBC,ABCCAB,ABCDFB,DBDF,ADFADEFDE,EDBFDBFDE,即ADFEDB,ADDE,ADFEDB,AFBE,AFDEBDAFDABC+FDB,DBEABD+ABE,ABEFDB(3)分两种情况讨论:当点D在线段BC上时,由(2)可知:BEAF,DFAC,AB8,AF2,BEAF2,当点D在BC的延长线上时,ACDF,AB8,AF4,即BE=4,综上所述,BE的长度为2或46.(2019开封二模)问题发现如图1,ABC是等边三角形,点D是边AD上的一点,过点D作DEAC交AC于E,则线段B

35、D与CE有何数量关系?拓展探究如图2,将ADE绕点A逆时针旋转角(0360),上面的结论是否仍然成立?如果成立,请就图中给出的情况加以证明问题解决如果ABC的边长等于2,AD2,直接写出当ADE旋转到DE与AC所在的直线垂直时BD的长图1 图2 备用图【答案】见解析【解析】解:(1)如图1,BDCE,理由是:ABC是等边三角形,ABAC,DEBC,ADE是等边三角形,即AD=AE,BDCE;(2)结论仍然成立,由图1得:ADAE,由旋转性质得:BADCAE,AB=AC,BADCAE,BDCE;(3)分两种情况讨论,如图所示,过D作DGAB,垂足为G,AFDE,AD=AE,DAFEAF30,BA

36、D30,由AD2,得:DG1,AG,由AB2,得:BG,由勾股定理得:BD2如图,由(2)中证明可知:BADCAE,BDCE,ADAE,DEAC,ADE60EAFFAD30,EFFDAD1,AF,CFAC+CF3,在RtEFC中,由勾股定理得:EC2,BDEC2,综上所述,BD的长为2或27.(2019安阳二模)(1)问题发现:如图1,在四边形ABCD中,ABDC,E是BC的中点,若AE是BAD的平分线,则AB,AD,DC之间的数量关系为 (2)问题探究:如图2,在四边形ABCD中,ABDC,E是BC的中点,点F是DC的延长线上一点,若AE是BAF的平分线,试探究AB,AF,CF之间的数量关系

37、,并证明你的结论(3)问题解决:如图3,ABCD,点E在线段BC上,且BE:EC3:4点F在线段AE上,且EFDEAB,直接写出AB,DF,CD之间的数量关系图1 图2 图3【答案】(1)ADAB+CD;(2)(3)见解析【解析】解:(1)结论:ADAB+CD理由:ABCF,CFEEAB,CEEB,CEFAEB,CEFBEA ,ABCFAF平分DAB,DAFEAB,EABCFE,DAFDFA,ADDF,DFDC+CFCD+AB,ADAB+CD(2)结论:ABAF+CF理由:延长AE、DC交于G,ABDG,GEAB,CEEB,CEGBEA,CEGBEA,ABCG,GEAB,AE平分FAB,FAG

38、EAB,GEAB,FAGG,FAFG,CGCF+FGCF+AF,ABAF+CF(3)结论:AB(CD+DF)延长AE、CD交于GCGAB,GA,ABCG,DFEA,DFGG,DFDG,CD+DFCD+DGCG,AB(CD+DF)8.(2019中原名校大联考)如图1,在RtABC中,BAC90,ABAC,点D,E分别在边AB,AC上,ADAE,连接DC,BE,点P为DC的中点,(1)【观察猜想】图1中,线段AP与BE的数量关系是 ,位置关系是 (2)【探究证明】把ADE绕点A逆时针旋转到图2的位置,(1)中的猜想是否仍然成立?若成立请证明,否请说明理由;(3)【拓展延伸】把ADE绕点A在平面内自由旋转,若AD4,AB10,请直接写出线段AP长度的最大值和最小值图1 图2【答案】(1)APBE,PABE;(2)(3)见解析【解析】解:(1)设PA交BE于点O ADAE,ACAB,DACEAB,DACEAB,BECD,ACDABE,DAC90,DPPC,PACDPCPD,PABE,CPAE,CAP+BAO90,ABO+BAO90,AOB90,PABE,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论