版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-作者xxxx-日期xxxx初中圆知识点总结与练习【精品文档】圆一圆的认识知识点晴1圆的定义OAr(1)在一个平面内,线段OA绕它的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。固定的端点O叫做圆心,线段OA叫做半径,如右图所示。(2)圆可以看作是平面内到定点的距离等于定长的点的集合,定点为圆心,定长为圆的半径。说明:圆的位置由圆心确定,圆的大小由半径确定,半径相等的两个圆为等圆。2圆的有关概念(1)弦:连结圆上任意两点的线段。(如右图中的CD)。BOA(2)直径:经过圆心的弦(如右图中的AB)。直径等于半径的2倍。DC(3)弧:圆上任意两点间的部分叫做圆弧。(如右图中的、)其中
2、大于半圆的弧叫做优弧,如,小于半圆的弧叫做劣弧。(4)圆心角:如右图中COD就是圆心角。3与圆相关的角(1)与圆相关的角的定义圆心角:顶点在圆心的角叫做圆心角圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。(2)与圆相关的角的性质圆心角的度数等于它所对的弦的度数;一条弧所对的圆周角等于它所对的圆心角的一半;同弧或等弧所对的圆周角相等;半圆(或直径)所对的圆周角相等;弦切角等于它所夹的弧所对的圆周角;两个弦切角所夹的弧相等,那么这两个弦切角也相等;圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。4圆心角、弧、弦、弦心
3、距之间的关系。(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等例题精讲【例1】 下面四个命题中正确的一个是( ) A过弦的中点的直线平分弦所对的弧 B过弦的中点的直线必过圆心 C弦所对的两条弧的中点连线垂直平分弦,且过圆心 D弦的垂线平分弦所对的弧【答案】C二与圆有关的位置关系知识点晴1点与圆的位置关系如果圆的半径为r,某一点到圆心的距离为d,那么:(1)点在圆外(2)点在圆上(3)点在圆内2直线和圆的位置关系设r为圆的半径,d为圆心到直线的
4、距离(1)直线和圆相离,直线与圆没有交点;(2)直线和圆相切,直线与圆有唯一交点;(3)直线和圆相交,直线与圆有两个交点。3两圆的位置关系设R、r为两圆的半径,d为圆心距(1)两圆外离;(2)两圆外切;(3)两圆相交;(4)两圆内切;(5)两圆内含。(注意:如果为,则两圆为同心圆。)4. 切线的性质与判定定理 (1)切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:且过半径外端 是的切线(2)性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。5. 切线长定理 从圆外
5、一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。 即:、是的两条切线 平分例题精讲【例2】 已知O的半径为1,点P到圆心O的距离为d,若关于x的方程x22xd=0有实根,则点P( )A在O的内部B在O的外部C在O上D在O上或O的内部【答案】D【例3】 已知:如图,PA,PB分别与O相切于A,B两点求证:OP垂直平分线段AB【答案】略【例4】 已知:如图,PA切O于A点,POAC,BC是O的直径请问:直线PB是否与O相切?说明你的理由【答案】直线PB与O相切提示:连结OA,证PAOPBO【例5】已知:如图,O1与O2外切于A点,直线l与O1、O2分别切于B,C点,若O1
6、的半径r1=2cm,O2的半径r2=3cm求BC的长 【答案】提示:分别连结O1B,O1O2,O2C【例6】如图,点A,B在直线MN上,AB=11cm,A,B的半径均为1cmA以每秒2cm的速度自左向右运动,与此同时,B的半径也不断增大,其半径r(cm)与时间t(s)之间的关系式为r=1t(t0)(1)试写出点A,B之间的距离d(cm)与时间t(s)之间的函数表达式;(2)问点A出发多少秒时两圆相切?【答案】(1)当0t时,d112t;当t时,d2t11(2) 第一次外切,t3;第一次内切,第二次内切,t11;第二次外切,t13三垂径定理及推论知识点晴垂径定理:垂直于弦的直径平分弦且平分弦所对
7、的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; 推论2:圆的两条平行弦所夹的弧相等。 即:在中, 弧弧例题精讲【例7】在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm,那么油面宽度AB是_cm. 【答案】 【例8】如图,F是以O为圆心,BC为直径的半圆上任意一点,A是的中点,ADBC于D,求证:AD=BF. 【答案】提示:连接OF,证明 是全等三角形。四圆周角定理知识点晴1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角2、圆周角定
8、理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在中,、都是所对的圆周角 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或 是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中, 是直角三角形或例题精讲【例9】已知:如图,AB是O的直径,弦CDAB于E,ACD=30,AE=2cm求DB 【答案】【例10】已知:如图,O的直径AE=10cm,B=EAC求AC的长 【答案】提示:连结CE不难得出五与圆有关的计算知识点晴1 圆周长:2 弧长:;3 圆面积:;4 扇形面积
9、:;例题精讲【例11】如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为120,AB的长为30cm,贴纸部分BD的长为20cm,则贴纸部分的面积为( ) ABCD【答案】D 【例12】已知:如图,以线段AB为直径作半圆O1,以线段AO1为直径作半圆O2,半径O1C交半圆O2于D点试比较与的长【答案】的长等于的长提示:连结O2D六圆幂定理知识点晴1.相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点, 推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比 例中项。即:在中,直径, 2. 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交
10、点的两条线段长的比例中项。即:在中,是切线,是割线 3. 割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在中,、是割线 例题精讲【例13】如图,P是O外一点,PC切O于点C,PAB是O的割线,交O于A、B两点,如果PA:PB1:4,PC12cm,O的半径为10cm,则圆心O到AB的距离是_【答案】9七正多边形与圆知识点晴1.正三角形 在中是正三角形,有关计算在中进行:;2.正四边形同理,四边形的有关计算在中进行,:3.正六边形同理,六边形的有关计算在中进行,.例题精讲【例13】已知正多边形的边长为a与外接圆半径R之间满足,则这个多边形是( )
11、 A. 正三边形B. 正四边形C. 正五边形D. 正六边形【答案】C 提示:正多边形的边数越多,则边长越小,而有 因为,所以 则,是正五边形,应选C。八课后练习题【例1】若P为半径长是6cm的O内一点,OP2cm,则过P点的最短的弦长为( )A12cmBCD【答案】D【例2】若O的半径长是4cm,圆外一点A与O上各点的最远距离是12cm,则自A点所引O的切线长为( )A16cmBCD【答案】B【例3】O中,AOB100,若C是上一点,则ACB等于( )A80B100C120D130【答案】A【例4】三角形的外心是( )A三条中线的交点B三个内角的角平分线的交点C三条边的垂直平分线的交点D三条高
12、的交点【答案】C【例5】如图,A是半径为2的O外的一点,OA4,AB是O的切线,点B是切点,弦BCOA,则的长为( )7题图ABCD【答案】A【例6】如图,图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿,路线爬行,乙虫沿路线爬行,则下列结论正确的是( )8题图A甲先到B点B乙先到B点C甲、乙同时到B点D无法确定【答案】C【例7】如图,同心圆半径分别为2和1,AOB120,则阴影部分的面积为( )9题图ABC2D4【答案】C【例8】如图,在O中,AB为O的直径,弦CDAB,AOC60,则B_【答案】30【例9】如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为_【答案】【例10】已知:如图,在两个同心圆中,大圆的弦AB切小圆于C点,AB12cm求两个圆之间的圆环面积【答案】36pcm2提示:连接OC,OA.【例11】如图,在桌面上有半径为2 cm的三个圆形纸片两两外切,现用一个大圆片把这三个圆完全覆盖,求这个大圆片的半径最小应为多少?【答案】设三个圆的圆心为O1、O2、O3,连结O1O2、O2O3、O3O1,可得边长为4 cm的正O1O2O3,则正O1O2O3外接圆的半径为 cm,所以大圆的半径为+2=【例12】如图,在ABC中,C=90,以B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年壁画制作与安装协议3篇
- 2024版厨房设备租赁管理合同3篇
- 2024年度广告发布合同权利义务2篇
- 2024年度谭冷与配偶离婚财产分割及子女抚养费支付合同3篇
- 新疆维吾尔自治区2024年度上市公司发展报告水印版
- 2024版个人教育机构学费贷款还款协议样本3篇
- 2024年度商业贷款转住房公积金借款合同终止规定2篇
- 2024年度房地产经纪服务收费标准协议3篇
- 2024年养殖用地使用权租赁合同2篇
- 小儿斜颈的康复治疗
- 湖北省石首楚源“源网荷储”一体化项目可研报告
- 汽车 4S 店市场推广方案
- 家庭教育指导师练习试卷附答案
- T-CISA 370.2-2024 钢铁企业厂区内设备、管道及附属结构涂料防腐蚀工程技术规范 第2部分:环境分类与涂层体系
- 社会学与中国社会学习通超星期末考试答案章节答案2024年
- 艺术鉴赏学习通超星期末考试答案章节答案2024年
- 广东省2024年中考数学试卷三套合卷【附答案】
- 2024-2025学年四川省成都市高新区六年级数学第一学期期末考试试题含解析
- 《管理学原理与方法》考试复习题库(含答案)
- 2023年格力电器偿债能力分析
- 2024年人工智能训练师认证考试题库(浓缩600题)
评论
0/150
提交评论