版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 高考真题全解密 考点十四 导数与三次函数问题 真题1 (2009年安徽卷)设b,函数的图像可能是( )命题探究 考题的命制,直接给出函数图像,然后设计了四个选项,意在通过对问题的判断,直接考查三次函数的性质:单调区间和极值问题。这里,函数的化简、图像的观察等等,不仅需要扎实的基本功,而且还需要熟练的解题技巧。知识链接 1.三次函数图象a0a0000图象x1x2xx0xx1x2xx0x2函数单调性、极值点个数情况。=,记=,(其中x1,x2是方程=0的根,且x10a0000单调性在上,是增函数;在上,是减函数;在R上是增函数在上,是增函数;在上,是减函数;在R上是减函数极值点个数2020规范解
2、答真题2(2010江西卷)设函数.(1)若的两个极值点为,且,求实数的值;(2)是否存在实数,使得是上的单调函数?若存在,求出的值;若不存在,说明理由.命题探究 三次函数是导数内容中最简单的高次函数,其导函数是二次函数,这类问题的难点是研究其中的参数的取值范围.破解难点的方法是对三次函数求导后,化归成二次函数,通过二次函数要的分布求解,或利用数形结合思想画出函数的极大值、极小值后进行对比分析,求出参数的取值范围。解三次函数的问题,可借助导数工具进行研究,推进了二次函数性质的深化与二次函数方法的研究。规范解答考题再现(06福建文21)已知是二次函数,不等式的解集是且在区间上的最大值是12。(I)
3、求的解析式;(II)是否存在自然数使得方程在区间内有且只有两个不等的实数根?若存在,求出的取值范围;若不存在,说明理由。 规范解答抢分秘题1已知函数,当时,只有一个实数根;当有3个相异实根,现给出下列4个命题: 函数有2个极值点; 函数有3个极值点;方程的根小于的任意实根; 和有一个相同的实根其中正确命题的个数是( )。A1B2C3D42(2010北京卷) 设定函数,且方程的两个根分别为1,4。()当a=3且曲线过原点时,求的解析式;()若在无极值点,求a的取值范围。3(2009江西卷)设函数 (1)对于任意实数,恒成立,求的最大值;(2)若方程有且仅有一个实根,求的取值范围4已知函数,()讨
4、论函数的单调区间;()设函数在区间内是减函数,求的取值范围参考答案:解析,由得,当时,取极大值0,当时取极小值且极小值为负。故选C。或当时,当时,选C解析(1)由已知有,从而,所以;(2)由,所以不存在实数,使得是上的单调函数.解析本小题主要考查函数的单调性、极值等基本知识,考查运用导数研究函数的性质的方法,考查函数与方程、数形结合等数学思想方法和分析问题、解决问题的能力。满分12分。(I)解:是二次函数,且的解集是可设在区间上的最大值是由已知,得(II)方程等价于方程设则当时,是减函数;当时,是增函数。方程在区间内分别有惟一实数根,而在区间内没有实数根,所以存在惟一的自然数使得方程在区间内有且只有两个不同的实数根。1.C23解:(1) , 因为, 即 恒成立, 所以 , 得,即的最大值为 (2) 因为 当时, ;当时, ;当时, ; 所以 当时,取极大值 ; w.w.w.k.s.5.u.c.o.m 当时,取极
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版图书产品试用及读者评价协议3篇
- 2025年变电站电气设备绝缘试验与安装合同3篇
- 2024年鱼苗供需协议2篇
- 2025年度石场开采与地质勘探承包合同3篇
- 2025年文创商业街出售合同3篇
- 2024版钻井工程承包合同范本
- 二零二五年度重点区域安全保卫外包专项合同2篇
- 2024版画室租赁与创作分成合同版B版
- 二零二五年度城市绿化工程承包管理协议2篇
- 2024科技公司股东之间股权转让协议
- 财务机器人技术在会计工作中的应用
- 《保单检视专题》课件
- 建筑保温隔热构造
- 智慧财务综合实训
- 安徽省合肥市2021-2022学年七年级上学期期末数学试题(含答案)3
- 教育专家报告合集:年度得到:沈祖芸全球教育报告(2023-2024)
- 肝脏肿瘤护理查房
- 护士工作压力管理护理工作中的压力应对策略
- 2023年日语考试:大学日语六级真题模拟汇编(共479题)
- 皮带拆除安全技术措施
- ISO9001(2015版)质量体系标准讲解
评论
0/150
提交评论