版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1 2 3 Summarize 1-1 Movement differential equations of elastic objects 11-2 Without rotating wave and equal volume wave 11-3 Transverse wave and vertical wave 11-4 Spherical wave Chapter 11 Elastic Wave 4 概述概述 1-1 1-1 弹性体的运动微分方程弹性体的运动微分方程 11-2 11-2 无旋波与等容波无旋波与等容波 11-3 11-3 横波与纵波横波与纵波 11-4 11-4 球面波球面
2、波 第十一章第十一章 弹性波弹性波 5 Summarize: When elastic object bears loads in static force equilibrium conditions, not all the parts of object has displacement, distortion and stress. At the beginning of the loads, the parts which are more far from the loads have no impacts . After then ,the displacement , dist
3、ortion and stress caused by loads transmit to other places in a finite speed of wave. This wave is called elastic wave. This chapter will first give movement differential equations of elastic objects, then introduce some conceptions of elastic wave and simplify the equations according to different e
4、lastic waves, at last give the speed transmitting formulas of wave in infinite elastic objects. 6 概述概述 当静力平衡状态下的弹性体受到荷载作用时,并不是在 弹性体的所有各部分都立即引起位移、形变和应力。在作用 开始时,距荷载作用处较远的部分仍保持不受干扰。在作用 开始后,荷载所引起的位移、形变和应力,就以波动的形式 用有限大的速度向别处传播。这种波动就称为弹性波。 本章将首先给出描述弹性体运动的基本微分方程,然后 介绍弹性波的几个概念,针对不同的弹性波,对运动微分方 程进行简化,最后给出波在无限
5、大弹性体中传播速度公式。 7 11-1 Movement differential equations of elastic objects The two assumptions are equal to the basic assumptions when we discuss static force questions. So the physic and geometry equations and elastic equations where stress component is expressed by displacement component , still are t
6、he same with movement equations at any instantaneous time. The only difference is that the equilibrium differential equations of static questions must be substituted by movement differential equations . This chapter we still adopt the assumptions: (1) Elastic objects are ideal elastic objects. (2) T
7、he displacement and distortion are tinny. 8 11-1 11-1 弹性体的运动微分方程弹性体的运动微分方程 上述两条假设,完全等同于讨论静力问题的基本假 设。因此,在静力问题中给出的物理方程和几何方程, 以及把应力分量用位移分量表示的弹性方程,仍然适用 于讨论动力问题的任一瞬时,所不同的仅仅在于,静力 问题中的平衡微分方程必须用运动微分方程来代替。 本章仍然采用如下假设: (1) 弹性体为理想弹性体。 (2) 假定位移和形变都是微小的。 9 Toward any tiny object , when we apply dAlembert theory
8、, we must consider stress , body force and the inertia force of elastic objects caused by acceleration . In space right-angle coordinate system, the x, y, z directions component of inertia force of every unite volume are: Where is the density of elastic objects. 2 2 t u 2 2 t 2 2 t w 10 对于任取的微元体,运用达
9、朗伯尔原理,除了 考虑应力和体力以外,还须考虑弹性体由于具有加 速度而产生的惯性力。每单位体积上的惯性力在空 间直角坐标系的x,y,z方向的分量分别为: 其中为弹性体的密度。 2 2 t u 2 2 t 2 2 t w 11 Because of the equilibrium relations ,we simplify them and get: The above formulas are called movement differential equations of elastic objects. They and geometry equations and physic eq
10、uations are the basic equations of movement questions of elasticity mechanics 0 2 2 t u X zyx zx yx x 0 2 2 t Y xzy xyzyy 0 2 2 t w Z yxz yz xzz 12 由平衡关系,并简化后得: 上式称为弹性体的运动微分方程。它同几何方程和物理方程 一起构成弹性力学动力问题的基本方程。 0 2 2 t u X zyx zx yx x 0 2 2 t Y xzy xyzyy 0 2 2 t w Z yxz yz xzz 13 Note 1: geometry equati
11、ons: x u x y y z w z zy w yz x w z u zx y u x xy 14 注注1 1:几何方程:几何方程 x u x y y z w z zy w yz x w z u zx y u x xy 15 Note2: physic equations )( 1 zyxx E )( 1 xzyy E )( 1 yxzz E yzyz E )1 (2 zxzx E )1 (2 xyxy E )1 (2 16 注注2 2:物理方程:物理方程 )( 1 zyxx E )( 1 xzyy E )( 1 yxzz E yzyz E )1 (2 zxzx E )1 (2 xyxy
12、E )1 (2 17 Because the displacement component is difficult to be expressed by stress and its derivative, so movement equations of elasticity mechanics are usually solved according to the displacement. Substitute the elasticity equations where stress components are expressed by displacement component
13、 into movement differential equations, and we let: Then we get: z w yx u e 0) 21 1 ( )1 (2 2 2 2 t u Xu x eE 0) 21 1 ( )1 (2 2 2 2 t Y y eE 0) 21 1 ( )1 (2 2 2 2 t w Zw z eE 18 由于位移分量很难用应力及其导数来表示,所以弹 性力学动力问题通常要按位移求解。将应力分量用位移 分量表示的弹性方程代入运动微分方程,并令: 得: z w yx u e 0) 21 1 ( )1 (2 2 2 2 t u Xu x eE 0) 21
14、 1 ( )1 (2 2 2 2 t Y y eE 0) 21 1 ( )1 (2 2 2 2 t w Zw z eE 19 These are the basic differential equations of movement equations solved by displacement. They are also called Lame equations. We need boundary conditions to solve Lame equations. Besides these we still need original conditions , because
15、displacement components are the function of time variable . In order to simplify calculation , usually we neglect body force. Now the movement differential equations of elastic objects can be simplified as : ) 21 1 ( )1 (2 2 2 2 u x eE t u ) 21 1 ( )1 (2 2 2 2 y eE t ) 21 1 ( )1 (2 2 2 2 w z eE t 20
16、 这就是按位移求解动力问题的基本微分方程,也称 为拉密(Lame)方程。 要求解拉密方程,显然需要边界条件。除此之外, 由于位移分量还是时间变量的函数,因此求解动力问题 还要给出初始条件。 为求解上的简便,通常不计体力,此时弹性体的运 动微分方程简化为: ) 21 1 ( )1 (2 2 2 2 u x eE t u ) 21 1 ( )1 (2 2 2 2 y eE t ) 21 1 ( )1 (2 2 2 2 w z eE t 21 11-2 Without rotating Wave and equal volume wave 1. Without rotating waves With
17、out rotating wave means that in elastic objects , the distortion caused by waves is not rotating . That means rotating values of three vertical coordinates at any point in the elastic object are zero. x u y z w Where is potential function of displacement. This displacement is called without rotating
18、 displacement, and the elastic wave corresponds to the displacement are called without rotating wave. ),(tzyx Suppose the displacement of elastic objects can be expressed by : u ,v , w 22 11-2 11-2 无旋波与等容波无旋波与等容波 一、无旋波一、无旋波 所谓无旋波是指在弹性体中,波动所产生的变形不存在旋 转,即弹性体在任一点对三个垂直坐标轴的旋转量皆为零。 假定弹性体的位移u,v,w可以表示成为: x
19、u y z w 其中 是位移的势函数。这种位移称为无旋位 移。而相应于这种位移状态的弹性波就称无旋波。 ),(tzyx 23 proving:at any point of elastic object ,the rotating value of z axis is : So the rotating values of the three coordinates at any point of the elastic object are zero. y u x z substitute into the formula , we can get: x u y 0 z Similarly:
20、 0 x 0 y 24 证:在弹性体的任一点处,该点对z 轴的旋转量 即弹性体的任一点对三个坐标的旋转量都等于零。 y u x z 将 代入,可得: x u y 0 z 同理 0 x 0 y 25 In the condition of without rotating displacement: 2 z w yx u e sou xxx e 222 similarly: 2 y e w z e 2 Substitute the above three formulas into movement differential equations without including body fo
21、rce, simplify it we can get wave movement equations of without rotating wave. 26 在无旋位移状态下 2 z w yx u e 从而u xxx e 222 同理 2 y e w z e 2 将上三式代入不计体力的运动微分方程,并简化后 得无旋波的波动方程 27 uc t u 22 1 2 2 22 1 2 2 c t wc t w 22 1 2 2 )21)(1 ( )1 ( 1 E cWhere: 1 c is the transmitting speed of without rotating wave in i
22、nfinite elastic objects. 28 uc t u 22 1 2 2 22 1 2 2 c t wc t w 22 1 2 2 )21)(1 ( )1 ( 1 E c 其中 1 c 就是无旋波在无限大弹性体中的传播速度 29 Equal volume wave means that in the distortion caused by waves in elastic objects, the volume strain is zero. That means the volume of elastic object remains unchanged. 2. Equal
23、volume wave Suppose the displacement u, v, w of elastic objects satisfy the condition that the volume strain is zero: 0 z w yx u e This displacement is called equal volume displacement and the elastic wave corresponds to this displacement is called equal volume wave. 30 所谓等容波是指在弹性体内,波动所产生的变形中体积应 变为零
24、 。即弹性体中任一部分的容积(即体积)保持不变。 二、等容波二、等容波 假定弹性体的位移u,v,w满足体积应变为零的条件,即: 0 z w yx u e 这种位移称为等容位移。而相应于这种位移状态的弹性 波就是等容波。 31 Because ,so simplify movement differential equations without including body force we can get wave movement equations of equal volume wave: 0e uc t u 22 2 2 2 22 2 2 2 c t wc t w 22 2 2 2
25、where )1 ( 2 2 E c is the transmitting speed of equal volume waves in infinite elastic objects. 2 c 32 由于 ,故不计体力的运动微分方程,简化后得等 容波的波动方程: 0e uc t u 22 2 2 2 22 2 2 2 c t wc t w 22 2 2 2 其中 )1 ( 2 2 E c 就是等容波在无限大弹性体中的传播速度。 2 c 33 According to without rotating wave and equal volume wave , we give the con
26、clusion without proving that :in elastic objects , stress , strain and speed of particle transmit in the same way and the same speed as displacement. 34 对于无旋波和等容波,我们不加证明地给出如下结论: 在弹性体中,形变、应力以及质点速度,都将和位移以相 同的方式与速度进行传播。 35 1. vertical wave definition The particle movement direction of elastic objects i
27、s parallel to the transmitting direction of elastic wave. (seen in the Fig.) 11-3 Vertical wave and transverse wave 36 一、纵波 定义 弹性体的质点运动方向平行弹性波的传播方向(图示) 11-3 纵波与横波纵波与横波 37 Let x axis be the transmitting direction of waves, then the displacement components of any point in elastic objects are: ),(txuu
28、00w So: x u e And: 2 2 x u x e 0 y e 0 z e 2 2 2 x u u 0 2 0 2 w 38 将x轴取为波的传播方向,则弹性体内任取一点的位移 分量都有: ),(txuu 00w 从而 x u e 而 2 2 x u x e 0 y e 0 z e 2 2 2 x u u 0 2 0 2 w 39 Substitute them into movement differential equations without including body force, we can find that the second and third formulas
29、 are identical equations. So the first formula can be simplified as: 2 2 2 1 2 2 x u c t u where )21)(1 ( )1 ( 1 E c is transmitting speed of vertical wave in elastic objects. 1 c It is obvious that transmitting speed of vertical waves is the same as without rotating waves . In fact vertical wave is
30、 a kind of without rotating wave. 40 代入不计体力的运动微分方程,可见其第二、第三式成为 恒等式,而第一式简化为: 2 2 2 1 2 2 x u c t u 其中 )21)(1 ( )1 ( 1 E c 为纵波在弹性体中的传播速度。 1 c 显然纵波的传播速度与无旋波相同。事实上,纵波就是 一种无旋波。 41 The general solution of wave movement equations of vertical wave is:)()(),( 1211 tcxftcxftxu The physic meaning of the genera
31、l solution is: let us take the first item for example, function at a fixed time is function of x, and can be expressed by curve abc in Fig.(a) (suppose the form is like this ). After , the function becomes: )( 11 t cxf t )( 111 tctcxf If let ,then function becomes . Its format is similar to the orig
32、inal function . From the Fig we can see the only difference is transverse coordinate moves in level . So expresses the wave whose speed is along x positive direction . tcxx 11 )( 111 tcxf )( 11 tcxf tc 1 )( 11 tcxf 1 c 42 纵波波动方程的通解是: )()(),( 1211 tcxftcxftxu 该通解的物理意义:以其第一项为例,函数 在某 一个固定时刻将是x的函数,可以用图(
33、a)中的曲线abc表示 (假设是这种形状),在 时间之后,函数变为: )( 11 t cxf t )( 111 tctcxf 如果令 ,则函数可写为 ,其形式 同原函数 完全类同,只是横坐标发生平移 tcxx 11 )( 111 tcxf )( 11 tcxftc 1 见图。因此 表示以速度 向x轴正向传播的波。)( 11 tcxf 1 c 43 Similarly expresses the wave whose speed is along x negative direction . The general solution expresses two waves transmittin
34、g in opposite directions (in Fig.b). And the speed is the modulus of wave movement equations. 1 c )( 12 tcxf 1 c 1 f c a b x (a) (b) tc 1 tc 1 tc 1 44 同理 ,表示以同样速度 向x轴负向传播的波。 整个通解表示朝相反两个方向传播的两个波(如图b),其 传播速度为波动方程的系数 。 1 c)( 12 tcxf 1 c 1 f c a b x (a) (b) tc 1 tc 1 tc 1 45 2. Transverse wave definitio
35、n The partial movement direction of elastic object is vertical to the transmitting direction of elastic wave. Transmitting format of transverse wave 46 二、横波二、横波 定义 弹性体的质点运动方向垂直于弹性波的传播方向。 横波的传播形式 47 Still we let x axis be the transmitting direction of wave and y axis be displacement direction of part
36、ial. Then the displacement components of any point in the elastic object have: 0u ),(tx0w so0e and0 2 u 2 2 2 x 0 2 w Substitute them into movement differential equations without including body force, we can find that the first and third formulas are identical equations. So the second formula can be
37、 simplified as: 2 2 2 2 2 2 x c t )1 (2 2 E c 2 c is transmitting speed of transverse wave in elastic object. Because volume strain of transverse wave 48 仍然将x轴放在波的传播方向,y轴为质点位移方向,则 弹性体内任取一点的位移分量都有 0u ),(tx0w 从而0e 而0 2 u 2 2 2 x 0 2 w 代入不计体力的运动微分方程,可见其第一、第三式成为恒 等式,第二式简化为: 2 2 2 2 2 2 x c t )1 (2 2 E c
38、 2 c 为横波在弹性体中的传播速度。由于横波的体积应变 49 General solution to wave movement equations of transverse wave is: ,so transverse wave is equal volume wave 0e )()(),( 2221 tcxftcxftx It is obvious that the general solution expresses two waves transmitting in opposite directions . Its displacement is along y directi
39、on and the transmitting direction is along x direction . The transmitting speed is a constant . 2 c 50 横波的波动方程的通解为: ,故横波为等容波。0e )()(),( 2221 tcxftcxftx 显然,整个通解表示朝相反两个方向传播的两个波,它的 位移沿着y方向,而传播方向是沿着x方向,传播速度等于常 量 。 2 c 51 11-4 Spherical wave If elastic objects have spherical hole or spherical out surface
40、 ,when the spherical hole or spherical out surface bears spherical force , the elastic wave transmitting from the hole to the outside or form the surface to the inside is called spherical wave. Spherical wave is symmetrical of sphere. Apply basic differential equations of sphere symmetry, we get: 0)
41、 22 ( )21)(1 ( )1 ( 222 2 rr rr ku rdr du rdr udE Now . If we ignore body force , and use radial inertia force to substitute ),(truu rr 2 2 t u r r k 52 11-411-4 球面波球面波 如果弹性体具有圆球形的孔洞或具有圆球形的外表面, 则在圆球形孔洞或圆球形外表面上受到球对称的动力作用时 ,由孔洞向外传播或由外表面向内传播的弹性波,称为球面 波。 球面波是球对称的。利用球对称的基本微分方程: 0) 22 ( )21)(1 ( )1 ( 222
42、2 rr rr ku rdr du rdr udE 此时, ,而不计体力时,用径向惯性力),(truu rr 2 2 t u r 代替 , r k 53 Then the above formula can be simplified as: We get: 0) 22 ( )21)(1 ( )1 ( 2 2 22 2 t u r u r u rr uE rrrr let: )21)(1 ( )1 ( 1 E c Suppose r ur then is potential function of displacement. Substitute it into formula (a), we
43、 get: ),(tr 0 122 2 2 2 1 2 2 t u cr u r u rr u r r rrr (a) 54 则上式简写成 即得: 0) 22 ( )21)(1 ( )1 ( 2 2 22 2 t u r u r u rr uE rrrr 令: )21)(1 ( )1 ( 1 E c 假定 r ur 则 是位移的势函数。代入(a)式得 ),(tr 0 122 2 2 2 1 2 2 t u cr u r u rr u r r rrr (a) 55 So formula (b) can be written as Because rrrrr r rrr 221 2 2 3 3 2 2 2 2 2 2 trrt 0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代化银行网点服务创新方案
- 急性脑梗死的中医调理方案
- 医用压力紧身衣市场需求与消费特点分析
- 新媒体时代的印刷品营销方案
- 提供泊船设施行业营销策略方案
- 消防设备检修与施工组织方案
- 石油化工VOCs治理施工方案
- 某地产工会员工俱乐部管理制度
- 光学读码器市场发展预测和趋势分析
- 房地产行业合同管理制度解析
- 2024年4月贵州省高三年级适应性考试历史试卷
- 车间物料配送制度
- 机器视觉原理与应用 课件 4 机器视觉测量系统
- 气象业务培训总结报告
- 闽教版2023版3-6年级全8册英语单词表
- 第8讲+隋唐的文化
- 廉洁风险点及控制措施
- 2024年广西来宾产业投资集团有限公司招聘笔试参考题库含答案解析
- 项目管理甘特图课件
- 2024年甘肃省普通高中信息技术会考试题(含24套)
- 管网设计分析报告
评论
0/150
提交评论