版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 3.1.1空间向量及其运算 学习目标 1. 理解空间向量的概念,掌握其表示方法;2. 会用图形说明空间向量加法、减法、数乘向量及它们的运算律;3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题 学习过程 一、课前准备(预习教材P84 P86,找出疑惑之处)复习1:平面向量基本概念:具有 和 的量叫向量, 叫向量的模(或长度); 叫零向量,记着 ; 叫单位向量. 叫相反向量, 的相反向量记着 . 叫相等向量. 向量的表示方法有 , ,和 共三种方法. 复习2:平面向量有加减以及数乘向量运算:1. 向量的加法和减法的运算法则有 法则 和 法则. 2. 实数与向量的积:实数与向量a的积
2、是一个 量,记作 ,其长度和方向规定如下: (1)|a| . (2)当0时,a与A. ;当0时,a与A. ;当0时,a .3. 向量加法和数乘向量,以下运算律成立吗?加法交换律:abba加法结合律:(ab)ca(bc)数乘分配律:(ab)ab二、新课导学 学习探究探究任务一:空间向量的相关概念问题: 什么叫空间向量?空间向量中有零向量,单位向量,相等向量吗?空间向量如何表示?新知:空间向量的加法和减法运算:空间任意两个向量都可以平移到同一平面内,变为两个平面向量的加法和减法运算,例如右图中, , ,试试:1. 分别用平行四边形法则和三角形法则求.2. 点C在线段AB上,且,则 , .反思:空间
3、向量加法与数乘向量有如下运算律吗?加法交换律:A. + B. = B. + a;加法结合律:(A. + b) + C. =A. + (B. + c);数乘分配律:(A. + b) =A. +b 典型例题例1 已知平行六面体(如图),化简下列向量表达式,并标出化简结果的向量:变式:在上图中,用表示和.小结:空间向量加法的运算要注意:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量例2 化简下列各式: ; .变式:化简下列各式: ; ; .小结:化简向量表达式主要是利用平行四边形法则或三角形法则,遇到减法既可转化成加法
4、,也可按减法法则进行运算,加法和减法可以转化. 动手试试练1. 已知平行六面体, M为AC与BD的交点,化简下列表达式: ; ; .三、总结提升 学习小结1. 空间向量基本概念;2. 空间向量加法、减法、数乘向量及它们的运算律 知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法中正确的是( )A. 若=,则,
5、的长度相同,方向相反或相同;B. 若与是相反向量,则=;C. 空间向量的减法满足结合律;D. 在四边形ABCD中,一定有.2. 长方体中,化简= 3. 已知向量,是两个非零向量,是与,同方向的单位向量,那么下列各式正确的是( )A. B. 或C. D. =4. 在四边形ABCD中,若,则四边形是( )A. 矩形 B. 菱形 C. 正方形 D. 平行四边形5. 下列说法正确的是( )A. 零向量没有方向 B. 空间向量不可以平行移动C. 如果两个向量不相同,那么它们的长度不相等D. 同向且等长的有向线段表示同一向量 课后作业 1. 在三棱柱ABC-ABC中,M,N分别为BC,BC的中点,化简下列
6、式子: + + 2. 如图,平行六面体中,点为与的的交点,则下列向量中与相等的是( )A. B. C. D. 3.1.2 空间向量的数乘运算(一) 学习目标 1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;2. 理解共线向量定理和共面向量定理及它们的推论; 3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题 学习过程 一、课前准备(预习教材P86 P87,找出疑惑之处)复习1:化简: 5()+4(); .复习2:在平面上,什么叫做两个向量平行?在平面上有两个向量, 若是非零向量,则与平行的充要条件是 二、新课导学 学习探究探究任务一:空间向量的共线问题:空间任意两个向量有几
7、种位置关系?如何判定它们的位置关系?新知:空间向量的共线:1. 如果表示空间向量的 所在的直线互相 或 ,则这些向量叫共线向量,也叫平行向量. 2. 空间向量共线:定理:对空间任意两个向量(), 的充要条件是存在唯一实数,使得 推论:如图,l为经过已知点A且平行于已知非零向量的直线,对空间的任意一点O,点P在直线l上的充要条件是 试试:已知 ,求证: A,B,C三点共线. 反思:充分理解两个向量共线向量的充要条件中的,注意零向量与任何向量共线. 典型例题例1 已知直线AB,点O是直线AB外一点,若,且x+y1,试判断A,B,P三点是否共线?变式:已知A,B,P三点共线,点O是直线AB外一点,若
8、,那么t 例2 已知平行六面体,点M是棱AA的中点,点G在对角线AC上,且CG:GA=2:1,设=,试用向量表示向量.变式1:已知长方体,M是对角线AC中点,化简下列表达式: ; 变式2:如图,已知不共线,从平面外任一点,作出点,使得:. 小结:空间向量的化简与平面向量的化简一样,加法注意向量的首尾相接,减法注意向量要共起点,并且要注意向量的方向. 动手试试练1. 下列说法正确的是( )A. 向量与非零向量共线,与共线,则与 共线;B. 任意两个共线向量不一定是共线向量;C. 任意两个共线向量相等;D. 若向量与共线,则. 2. 已知,若,求实数 三、总结提升 学习小结1. 空间向量的数乘运算
9、法则及它们的运算律;2. 空间两个向量共线的充要条件及推论. 知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 下列说法正确的是( )A.与非零向量共线,与共线,则与共线B. 任意两个相等向量不一定共线C. 任意两个共线向量相等D. 若向量与共线,则2. 正方体中,点E是上底面的中心,若,则x ,y ,z . 3.
10、若点P是线段AB的中点,点O在直线AB外,则 + .4. 平行六面体, O为AC与BD的交点,则 5. 已知平行六面体,M是AC与BD交点,若,则与相等的向量是( )A. ; B. ;C. ; D. . 课后作业: 3.1.2 空间向量的数乘运算(二) 学习目标 1. 掌握空间向量的数乘运算律,能进行简单的代数式化简;2. 理解共线向量定理和共面向量定理及它们的推论; 3. 能用空间向量的运算意义及运算律解决简单的立体几何中的问题 学习过程 一、课前准备(预习教材P86 P87,找出疑惑之处)复习1:什么叫空间向量共线?空间两个向量, 若是非零向量,则与平行的充要条件是 复习2:已知直线AB,
11、点O是直线AB外一点,若,试判断A,B,P三点是否共线?二、新课导学 学习探究探究任务一:空间向量的共面问题:空间任意两个向量不共线的两个向量有怎样的位置关系?空间三个向量又有怎样的位置关系? 新知:共面向量: 同一平面的向量. 2. 空间向量共面:定理:对空间两个不共线向量,向量与向量共面的充要条件是存在 , 使得 .推论:空间一点P与不在同一直线上的三点A,B,C共面的充要条件是: 存在 ,使 对空间任意一点O,有 试试:若空间任意一点O和不共线的三点A,B,C满足关系式,则点P与 A,B,C共面吗?反思:若空间任意一点O和不共线的三点A,B,C满足关系式,且点P与 A,B,C共面,则 .
12、 典型例题例1 下列等式中,使M,A,B,C四点共面的个数是( ).A. 1 B. 2 C. 3 D. 4变式:已知A,B,C三点不共线,O为平面ABC外一点,若向量则P,A,B,C四点共面的条件是 例2 如图,已知平行四边形ABCD,过平面AC外一点O作射线OA,OB,OC,OD,在四条射线上分别取点E,F,G,H,并且使求证:E,F,G,H四点共面. 变式:已知空间四边形ABCD的四个顶点A,B,C,D不共面,E,F,G,H分别是AB,BC,CD,AD的中点,求证:E,F,G,H四点共面.小结:空间向量的化简与平面向量的化简一样,加法注意向量的首尾相接,减法注意向量要共起点,并且要注意向量
13、的方向. 动手试试练1. 已知三点不共线,对平面外任一点,满足条件,试判断:点与是否一定共面?练2. 已知,若,求实数 三、总结提升 学习小结1. 空间向量的数乘运算法则及它们的运算律;2. 空间两个向量共线的充要条件及推论. 知识拓展平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相同的长度”,空间的平移包含平面的平移. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 在平行六面体ABCDA1B1C1D1中,
14、向量、是( )A. 有相同起点的向量 B等长向量 C共面向量 D不共面向量.2. 正方体中,点E是上底面的中心,若,则x ,y ,z . 3. 若点P是线段AB的中点,点O在直线AB外,则 + .4. 平行六面体, O为AC与BD的交点,则 .5. 在下列命题中:若a、b共线,则a、b所在的直线平行;若a、b所在的直线是异面直线,则a、b一定不共面;若a、b、c三向量两两共面,则a、b、c三向量一定也共面;已知三向量a、b、c,则空间任意一个向量p总可以唯一表示为pxaybzc其中正确命题的个数为 ( ).A0 B.1 C. 2 D. 3课后作业: 1. 若,若,求实数.2.已知两个非零向量不
15、共线, . 求证:共面3.1.3空间向量的数量积(1) 学习目标 1. 掌握空间向量夹角和模的概念及表示方法;2. 掌握两个向量的数量积的计算方法,并能利用两个向量的数量积解决立体几何中的一些简单问题 学习过程 一、课前准备(预习教材P90 P92,找出疑惑之处)复习1:什么是平面向量与的数量积? 复习2:在边长为1的正三角形ABC中,求.二、新课导学 学习探究探究任务一:空间向量的数量积定义和性质 问题:在几何中,夹角与长度是两个最基本的几何量,能否用向量的知识解决空间两条直线的夹角和空间线段的长度问题? 新知:1) 两个向量的夹角的定义:已知两非零向量,在空间 一点,作,则叫做向量与的夹角
16、,记作 . 试试: 范围: =0时, ;=时, 成立吗? ,则称与互相垂直,记作 .2) 向量的数量积:已知向量,则 叫做的数量积,记作,即 .规定:零向量与任意向量的数量积等于零.反思: 两个向量的数量积是数量还是向量? (选0还是) 你能说出的几何意义吗?3) 空间向量数量积的性质: (1)设单位向量,则(2) (3) .4) 空间向量数量积运算律:(1)(2)(交换律)(3)(分配律反思: 吗?举例说明. 若,则吗?举例说明. 若,则吗?为什么? 典型例题例1 用向量方法证明:在平面上的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.变式1:用向量方法证明:已知:是
17、平面内的两条相交直线,直线与平面的交点为,且.求证: 例2 如图,在空间四边形中,求与的夹角的余弦值变式:如图,在正三棱柱ABC-ABC中,若AB=BB,则AB与CB所成的角为( )A. 60 B. 90 C. 105 D. 75 例3 如图,在平行四边形ABCD-ABCD中,,=60,求的长. 动手试试练1. 已知向量满足,则_.练2. , 则的夹角大小为_.三、总结提升 学习小结1.向量的数量积的定义和几何意义.2. 向量的数量积的性质和运算律的运用. 知识拓展向量给出了一种解决立体几何中证明垂直问题,求两条直线的夹角和线段长度的新方法. 学习评价 自我评价 你完成本节导学案的情况为( )
18、. A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 下列命题中:若,则,中至少一个为若且,则正确有个数为( )A. 0个 B. 1个 C. 2个 D. 3个2. 已知和是两个单位向量,夹角为,则下面向量中与垂直的是( )A. B. C. D. 3.已知中,所对的边为,且,则= 4. 已知,且和不共线,当 与的夹角是锐角时,的取值范围是 .5. 已知向量满足,则_课后作业: 1. 已知空间四边形中,求证:.2. 已知线段AB、BD在平面内,BDAB, 线段,如果ABa,BDb,ACc,求C、D间的距离.3.1.4 空间向量的正交分解及其坐标表示
19、学习目标 1. 掌握空间向量的正交分解及空间向量基本定理和坐标表示;2. 掌握空间向量的坐标运算的规律; 学习过程 一、课前准备(预习教材P92-96找出疑惑之处)复习1:平面向量基本定理:对平面上的任意一个向量,是平面上两个 向量,总是存在 实数对,使得向量可以用来表示,表达式为 ,其中叫做 . 若,则称向量正交分解. 复习2:平面向量的坐标表示:平面直角坐标系中,分别取x轴和y轴上的 向量作为基底,对平面上任意向量,有且只有一对实数x,y,使得,则称有序对为向量的 ,即 .二、新课导学 学习探究探究任务一:空间向量的正交分解问题:对空间的任意向量,能否用空间的几个向量唯一表示?如果能,那需
20、要几个向量?这几个向量有何位置关系?新知:1 空间向量的正交分解:空间的任意向量,均可分解为不共面的三个向量、,使. 如果两两 ,这种分解就是空间向量的正交分解.(2)空间向量基本定理:如果三个向量 ,对空间任一向量,存在有序实数组,使得. 把 的一个基底,都叫做基向量.反思:空间任意一个向量的基底有 个.单位正交分解:如果空间一个基底的三个基向量互相 ,长度都为 ,则这个基底叫做单位正交基底,通常用i,j,k表示.空间向量的坐标表示:给定一个空间直角坐标系O-xyz和向量a,且设i、j、k为 x轴、y轴、z轴正方向的单位向量,则存在有序实数组,使得,则称有序实数组为向量a的坐标,记着 .设A
21、,B,则 .向量的直角坐标运算:设a,b,则ab;ab;a;ab.试试:1. 设,则向量的坐标为 .2. 若A,B,则 .3. 已知a,b,求ab,ab,8a,ab 典型例题例1 已知向量是空间的一个基底,从向量中选哪一个向量,一定可以与向量 构成空间的另一个基底?变式:已知O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C是否共面?小结:判定空间三个向量是否构成空间的一个基底的方法是:这三个向量一定不共面.例2 如图,M,N分别是四面体QABC的边OA,BC的中点,P,Q是MN的三等分点,用表示和. 变式:已知平行六面体,点G是侧面的中心,且,试用向量表示下列向量:
22、. 动手试试练1. 已知,求:; .练2. 正方体的棱长为2,以A为坐标原点,以为x轴、y轴、z轴正方向建立空间直角坐标系,则点,的坐标分别是 , , .三、总结提升 学习小结1. 空间向量的正交分解及空间向量基本定理;2. 空间向量坐标表示及其运算 知识拓展建立空间直角坐标系前,一定要验证三条轴的垂直关系,若图中没有建系的环境,则根据已知条件,通过作辅助线来创造建系的图形. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 若为空间向量的一组基底,则下列各项中,能构成基底的是( )A. B.
23、 C. D. 2. 设i、j、k为空间直角坐标系O-xyz中x轴、y轴、z轴正方向的单位向量,且,则点B的坐标是 3. 在三棱锥OABC中,G是的重心(三条中线的交点),选取为基底,试用基底表示 4. 正方体的棱长为2,以A为坐标原点,以为x轴、y轴、z轴正方向建立空间直角坐标系,E为BB1中点,则E的坐标是 .5. 已知关于x的方程有两个实根,且,当t 时,的模取得最大值. 课后作业 1. 已知,求线段AB的中点坐标及线段AB的长度.2. 已知是空间的一个正交基底,向量是另一组基底,若在的坐标是,求在的坐标.3.1.5 空间向量运算的坐标表示 学习目标 1. 掌握空间向量的长度公式、夹角公式
24、、两点间距离公式、中点坐标公式;2. 会用这些公式解决有关问题. 学习过程 一、课前准备(预习教材P95 P97,找出疑惑之处)复习1:设在平面直角坐标系中,A,B,则线段AB .复习2:已知,求:aB. 3ab; 6A. ; ab.二、新课导学 学习探究探究任务一:空间向量坐标表示夹角和距离公式问题:在空间直角坐标系中,如何用坐标求线段的长度和两个向量之间的夹角?新知:1. 向量的模:设a,则a 2. 两个向量的夹角公式:设a,b,由向量数量积定义: ab|a|b|cosa,b,又由向量数量积坐标运算公式:ab ,由此可以得出:cosa,b 试试: 当cosa、b1时,a与b所成角是 ; 当
25、cosa、b1时,a与b所成角是 ; 当cosa、b0时,a与b所成角是 ,即a与b的位置关系是 ,用符合表示为 .反思:设a,b,则 a/B. a与b所成角是 a与b的坐标关系为 ; aba与b的坐标关系为 ;3. 两点间的距离公式:在空间直角坐标系中,已知点,则线段AB的长度为:.4. 线段中点的坐标公式:在空间直角坐标系中,已知点,则线段AB的中点坐标为: . 典型例题例1. 如图,在正方体中,点分别是的一个四等分点,求与所成的角的余弦值变式:如上图,在正方体中,求与所成角的余弦值 例2. 如图,正方体中,点E,F分别是的中点,求证:. 变式:如图,正方体中,点M是AB的中点,求与CM所
26、成角的余弦值. 小结:求两个向量的夹角或角的余弦值的关键是在合适的直角坐标系中找出两个向量的坐标,然后再用公式计算. 动手试试练1. 已知A(3,3,1)、B(1,0,5),求:线段AB的中点坐标和长度;到A、B两点距离相等的点的坐标x、y、z满足的条件练2. 如图,正方体的棱长为2,试建立适当的空间直角坐标系,写出正方体各顶点的坐标,并和你的同学交流.三、总结提升 学习小结1. 空间向量的长度公式、夹角公式、两点间距离公式、中点坐标公式;2. 解决立体几何中有关向量问题的关键是如何建立合适的空间直角坐标系,写出向量的坐标,然后再代入公式进行计算. 知识拓展在平面内取正交基底建立坐标系后,坐标
27、平面内的任意一个向量,都可以用二元有序实数对表示,平面向量又称二维向量.空间向量可用三元有序实数组表示,空间向量又称三维向量.二维向量和三维向量统称为几何向量. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 若a,b,则是的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不不要条件2. 已知,且,则x .3. 已知,与的夹角为120,则的值为( )A. B. C. D. 4. 若,且的夹角为钝角,则的取值范围是( )A. B. C. D. 5. 已知 , 且,则(
28、)A. B. C. D. 课后作业: 1. 如图,正方体棱长为, 求的夹角;求证:. 2. 如图,正方体中,点M,N分别为棱的中点,求CM和所成角的余弦值. 3.1 空间向量及其运算(练习) 学习目标 1. 熟练掌握空间向量的加法,减法,向量的数乘运算,向量的数量积运算及其坐标表示;2. 熟练掌握空间线段的长度公式、夹角公式、两点间距离公式、中点坐标公式,并能熟练用这些公式解决有关问题. 学习过程 一、课前准备:(阅读课本p115)复习:1. 具有 和 的量叫向量, 叫向量的模; 叫零向量,记着 ; 具有 叫单位向量.2. 向量的加法和减法的运算法则有 法则 和 法则.3.实数与向量a的积是一
29、个 量,记作 ,其长度和方向规定如下: (1)|a| . (2)当0时,a与A. ;当0时,a与A. ;当0时,a .4. 向量加法和数乘向量运算律:交换律:ab 结合律:(ab)c 数乘分配律:(ab) 5. 表示空间向量的 所在的直线互相 或 ,则这些向量叫共线向量,也叫平行向量.空间向量共线定理:对空间任意两个向量(), 的充要条件是存在唯一实数, 使得 ; 推论: l为经过已知点A且平行于已知非零向量的直线,对空间的任意一点O,点P在直线l上的充要条件是 6. 空间向量共面:共面向量: 同一平面的向量. 定理:对空间两个不共线向量,向量与向量共面的充要条件是存在 , 使得 .推论:空间
30、一点P与不在同一直线上的三点A,B,C共面的充要条件是: 存在 ,使 对空间任意一点O,有 7. 向量的数量积: .8. 单位正交分解:如果空间一个基底的三个基向量互相 ,长度都为 ,则这个基底叫做单位正交基底,通常用i,j,k表示.9.空间向量的坐标表示:给定一个空间直角坐标系O-xyz和向量a,且设i、j、k为 x轴、y轴、z轴正方向的单位向量,则存在有序实数组,使得,则称有序实数组为向量a的坐标,记着 .10. 设A,B,则 .11. 向量的直角坐标运算:设a,b,则ab ; ab ;a ; ab 动手试试1在下列命题中:若a、b共线,则a、b所在的直线平行;若a、b所在的直线是异面直线
31、,则a、b一定不共面;若a、b、c三向量两两共面,则a、b、c三向量一定也共面;已知三向量a、b、c,则空间任意一个向量p总可以唯一表示为pxaybzc其中正确命题的个数为( )A0 B. 1 C. 2 D. 32在平行六面体ABCDA1B1C1D1中,向量、是( )A有相同起点的向量 B等长向量 C共面向量 D不共面向量3已知a(2,1,3),b(1,4,2),c(7,5,),若a、b、c三向量共面,则实数=( )A. B. C. D. 4若a、b均为非零向量,则是a与b共线的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件5已知ABC的三个顶点为A(3
32、,3,2),B(4,3,7),C(0,5,1),则BC边上的中线长为( )A2 B3 C4 D56. 则( )A15 B5 C3 D1 典型例题例1 如图,空间四边形OABC中,点M在OA上,且OM=2MA,点为的中点,则 . 变式:如图,平行六面体中,,点分别是的中点,点Q在上,且,用基底表示下列向量: ; ; ; .例2 如图,在直三棱柱ABCA1B1C1中,,点是的中点,求证:. 变式:正三棱柱ABCA1B1C1的侧棱长为2,底面边长为1,点M是的中点,在直线上求一点N,使得 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(
33、时量:5分钟 满分:10分)计分:1直三棱柱ABCA1B1C1中,若, 则( )A. B. C. D. 2.、( )A B 与不平行也不垂直C. , D以上情况都可能.3. 已知+,|2,|3,|,则向量与之间的夹角为( )A30 B45 C60 D以上都不对4.已知且与互相垂直,则的值是( )A. .1 B. C. D. 5. 若A(m1,n1,3), B. (2m,n,m2n),C(m3,n3,9)三点共线,则m+n= 课后作业 如图,在棱长为1的正方体中,点分别是的中点. 求证:; 求与所成角的余弦; 求的长. 3.2立体几何中的向量方法(1)学习目标 1. 掌握直线的方向向量及平面的法
34、向量的概念;2. 掌握利用直线的方向向量及平面的法向量解决平行、垂直、夹角等立体几何问题 学习过程 一、课前准备(预习教材P102 P104,找出疑惑之处)复习1: 可以确定一条直线;确定一个平面的方法有哪些? 复习2:如何判定空间A,B,C三点在一条直线上? 复习3:设a,b,ab 二、新课导学 学习探究探究任务一: 向量表示空间的点、直线、平面问题:怎样用向量来表示点、直线、平面在空间中的位置?新知: 点:在空间中,我们取一定点作为基点,那么空间中任意一点的位置就可以用向量来表示,我们把向量称为点的位置向量. 直线: 直线的方向向量:和这条直线平行或共线的非零向量. 对于直线上的任一点,存
35、在实数,使得,此方程称为直线的向量参数方程. 平面: 空间中平面的位置可以由内两个不共线向量确定.对于平面上的任一点,是平面内两个不共线向量,则存在有序实数对,使得. 空间中平面的位置还可以用垂直于平面的直线的方向向量表示空间中平面的位置. 平面的法向量:如果表示向量的有向线段所在直线垂直于平面,则称这个向量垂直于平面,记作,那 么向量叫做平面的法向量.试试: .1.如果都是平面的法向量,则的关系 .2.向量是平面的法向量,向量是与平面平行或在平面内,则与的关系是 .反思: 1. 一个平面的法向量是唯一的吗?2. 平面的法向量可以是零向量吗? 向量表示平行、垂直关系:设直线的方向向量分别为,平
36、面 的法向量分别为,则 典型例题例1 已知两点,求直线AB与坐标平面的交点. 变式:已知三点,点在上运动(O为坐标原点),求当取得最小值时,点的坐标.小结:解决有关三点共线问题直接利用直线的参数方程即可. 例2 用向量方法证明两个平面平行的判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 变式:在空间直角坐标系中,已知,试求平面ABC的一个法向量. 小结:平面的法向量与平面内的任意向量都垂直. 动手试试练1. 设分别是直线的方向向量,判断直线的位置关系: ; .练2. 设分别是平面的法向量,判断平面的位置关系: ; .三、总结提升 学习小结1. 空间点,直线和平面的向量表
37、示方法2. 平面的法向量求法和性质. 知识拓展:求平面的法向量步骤:设平面的法向量为;找出(求出)平面内的两个不共线的向量的坐标;根据法向量的定义建立关于的方程组;解方程组,取其中的一个解,即得法向量. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 设分别是直线的方向向量,则直线的位置关系是 .2. 设分别是平面的法向量,则平面的位置关系是 .3. 已知,下列说法错误的是( )A. 若,则 B.若,则C.若,则 D.若,则4.下列说法正确的是( )A.平面的法向量是唯一确定的B.一条直线的
38、方向向量是唯一确定的C.平面法向量和直线的方向向量一定不是零向量D.若是直线的方向向量,则5. 已知,能做平面的法向量的是( )A. B. C. D. 课后作业 1. 在正方体中,求证:是平面的一个法向量.2已知,求平面的一个法向量.3.2立体几何中的向量方法(2) 学习目标 1. 掌握利用向量运算解几何题的方法,并能解简单的立体几何问题;2. 掌握向量运算在几何中求两点间距离和求空间图形中的角度的计算方法. 学习过程 一、课前准备(预习教材P105 P107,找出疑惑之处.复习1:已知,且,求.复习2:什么叫二面角?二面角的大小如何度量?二面角的范围是什么?二、新课导学 学习探究探究任务一:
39、用向量求空间线段的长度 问题:如何用向量方法求空间线段的长度?新知:用空间向量表示空间线段,然后利用公式求出线段长度.试试:在长方体中,已知,求的长.反思:用向量方法求线段的长度,关键在于把未知量用已知条件中的向量表示. 典型例题例1 如图,一个结晶体的形状为平行六面体,其中,以顶点A为端点的三条棱长都相等,且它们彼此的夹角都是60,那么以这个顶点为端点的晶体的对角线的长与棱长有什么关系? 变式1:上题中平行六面体的对角线的长与棱长有什么关系?变式2:如果一个平行六面体的各条棱长都相等,并且以某一顶点为端点的各棱间的夹角都等于, 那么由这个平行六面体的对角线的长可以确定棱长吗?探究任务二:用向
40、量求空间图形中的角度例2 如图,甲站在水库底面上的点A处,乙站在水坝斜面上的点B处.从A,B到直线(库底与水坝的交线)的距离分别为,的长为,的长为.求库底与水坝所成二面角的余弦值.变式:如图,的二面角的棱上有两点,直线分别在这个二面角的两个半平面内,且都垂直于已知,求的长. 动手试试练1. 如图,已知线段AB在平面内,线段,线段BDAB,线段,如果ABa,ACBDb,求C、D间的距离. 练2. 如图,M、N分别是棱长为1的正方体的棱、的中点求异面直线MN与所成的角.三、总结提升 学习小结1. 求出空间线段的长度:用空间向量表示空间线段,然后利用公式;2. 空间的二面角或异面直线的夹角,都可以转
41、化为利用公式求解. 知识拓展解空间图形问题时,可以分为三步完成: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题(还常建立坐标系来辅助);(2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(3)把向量的运算结果“翻译”成相应的几何意义. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1. 已知,则 .2. 已知,则的夹角为 .3. 若M、N分别是棱长为1的正方体的棱的中点,那么直线所成的角的余弦为( )A. B. C. D.4. 将锐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 借款人与出质人之间的合同
- 简易个人分包合同
- 废止采购合同
- 专业分包工程合同样本
- 专业工程勘察招标启示
- 互联网金融交易担保协议
- 土工网带采购合同
- 技术服务合同税率动态
- 技术服务合同的技术改进费用标准
- 招标文件价格询价步骤
- 267条表情猜成语【动画版】
- 科研课题立项评审评分参照标准
- 统编版语文三年级上册第三单元培优试卷(含答案)
- 生产效率统计表
- 医疗机构药品自查报告(3篇)
- 钢板切割施工方案
- 有创机械通气与无创机械通气比较
- SWITCH暗黑破坏神3超级金手指修改 版本号:2.7.4.84040
- 广东省广州市黄埔区2023-2024学年数学四年级第一学期期末达标检测试题含答案
- 控制计划(空白)
- 菜鸟驿站转让合同协议
评论
0/150
提交评论