版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、会计学1 5.1动态规划的基本概念动态规划的基本概念 第1页/共9页 第2页/共9页 例1(最短路线问题)在线路网络图51中,从A至E有一批货物需要调运。图上所标数字为各节点之间的运输距离,为使总运费最少,必须找出一条由A至E总里程最短的路线。 A B1 B2 E B3 C2 C3 C1 D2 D3 D1 4 5 3 4 4 4 3 1 6 5 8 8 7 7 10 2 9 6 为了找到由A至E的最短线路,可以将该问题分成ABCDE 4个阶段,在每个阶段都需要作出决策,即在A点需决策下一步到B1还是到B2或B3;同样,若到达第二阶段某个状态,比如B1 ,需决定走向C1还是C2 ;依次类推,可以
2、看出:各个阶段的决策不同,由A至E的路线就不同,当从某个阶段的某个状态出发作出一个决策,则这个决策不仅影响到下一个阶段的距离,而且直接影响后面各阶段的行进线路。所以这类问题要求在各个阶段选择一个恰当的决策,使这些决策序列所决定的一条路线对应的总路程最短。 图图51 第3页/共9页 例2(带回收的资源分配问题)某厂新购某种机床125台。据估计,这种设备5年后将被其它设备所代替。此机车如在高负荷状态下工作,年损坏率为1/2,年利润为10万元;如在低负荷状态下工作,年损坏率为1/5,年利润为6万元。问应如何安排这些机床的生产负荷,才能使5年内获得的利润最大? 本问题具有时间上的次序性,在五年计划的每
3、一年都要作出关于这些机床生产负荷的决策,并且一旦作出决策,不仅影响到本年利润的多少,而且影响到下一年初完好机床数,从而影响以后各年的利润。所以在每年初作决策时,必须将当年的利润和以后各年利润结合起来,统筹考虑。 与上面例1、例2类似的多阶段决策问题还有资源分配、生产存贮、可靠性、背包、设备更新问题等等。 第4页/共9页 1.2 动态规划的基本概念 1.阶段阶段 动态规划问题通常都具有时间或空间上的次序性,因此求解这类问题时,首先要将问题按一定的次序划分成若干相互联系的阶段,以便能按一定次序去求解。如例1,可以按空间次序划分为ABCDE 4个阶段,而例2,按照时间次序可分成5个阶段。 2.状态状
4、态 在多阶段决策过程中,每阶段都需要作出决策,而决策是根据系统所处情况决定的。状态是描述系统情况所必需的信息。如例1中每阶段的出发点位置就是状态,例2中每年初拥有的完好机床数是作出机床负荷安排的根据,所以年初完好机床数是状态。一般地,状态可以用一个变量来描述,称为状态变量。记第k 阶段的状态变量为xk,k=1,2, ,n. 第5页/共9页 3.决策决策 多阶段决策过程的发展是用各阶段的状态演变来描述的,阶段决策就是决策者从本阶段某状态出发对下一阶段状态所作出的选择。描述决策的变量称为决策变量,当第k 阶段的状态确定之后,可能作出的决策要受到这一状态的影响。这就是说决策变量uk还是状态变量xk
5、的函数,因此,又可将第k阶段xk状态下的决策变量记为uk(xk)。 在实际问题中,决策变量的取值往往限制在某一范围之内,此范围称为允许决策变量集合,记作Dk(uk)。如例2中取高负荷运行的机床数uk为决策变量,则0ukxk(xk是k阶段初完好机床数)为允许决策变量集合。 4.状态转移方程状态转移方程 在多阶段决策过程中,如果给定了k 阶段的状态变量xk和决策变量uk,则第k+1阶段的状态变量xk+1也会随之而确定。也就是说xk+1是xk和uk函数,这种关系可记为 xk+1=T(xk, uk) 称之为状态转移方程状态转移方程。 第6页/共9页 5.策略策略 在一个多阶段决策过程中,如果各个阶段的
6、决策变量uk(xk) (k=1,2,n)都已确定,则整个过程也就完全确定。称决策序列u1(x1), u2(x2), , un(xn)为该过程的一个策略策略,从阶段k到阶段n的决策序列称为子策略子策略,表示成uk(xk), uk+1(xk+1), , un(xn) 。如例1中,选取一路线AB1C2D2E 就是一个策略: u1(A)= B1, u2(B1)= C2, u3(C2)= D2, u4(D2)=E 由于每一阶段都有若干个可能的状态和多种不同的决策,因而一个多阶段决策的实际问题存在许多策略可供选择,称其中能够满足预期目标的策略为最优策略最优策略。例1中存在12条不同路线,其中AB2C1D2E是最短线路。 6.指标函数指标函数 用来衡量过程优劣的数量指
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 制造业安全操作标准
- 城市河道绿化植树造林合同
- 人教新课标五年级语文下册教案
- 二年级语文下册集体备课教案
- 唐山市摄影服装租赁合同
- 妇幼保健院护工聘用合同
- 新闻采访车辆油耗维修管理规范
- 展览馆照明系统安装合同范本
- 印刷包装招投标委托书样本
- 大型剧院施工合同模板
- 联营项目管理办法(法务-合同-人力-策划-资金-结算)
- 第十章特定人群的口腔保健
- 小学科学课程空气占据空间吗说课稿公开课一等奖市赛课获奖课件
- 监理大纲范本(同名6493)
- 中非合作会议峰会
- 锂离子电池储能电站早期安全预警及防护
- 消防安全知识课件PPT
- 江苏省南通市通州区2021-2022学年高二上学期期中质量检测物理试题Word版含答案
- 物业公司 监控录像查看记录表
- 2022年组织能力调研白皮书-腾讯
- 生物化学(华南农业大学)智慧树知到答案章节测试2023年
评论
0/150
提交评论