R软件期末考试复习提纲_第1页
R软件期末考试复习提纲_第2页
R软件期末考试复习提纲_第3页
R软件期末考试复习提纲_第4页
R软件期末考试复习提纲_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、#期末考试专项复习 #一、矩阵与数据框#1.生成特定的矩阵与数据框#矩阵#方法一a=array(1:10,dim=c(2,5)rownames(a)=1:2colnames(a)=c(one,two,three,four,five)adimnames(a)=list(1:2,c(one,two,three,four,five)nrow=nrow(a)ncol=ncol(a)dim(a)#方法二a=matrix(1:10,nrow=2,byrow=F)rownames(a)=1:2colnames(a)=c(one,two,three,four,five)a=matrix(1:10,nrow=2

2、,byrow=F,dimnames=list(1:2,c(one,two,three,four,five)#数据框的生成df=data.frame(Name=c(Alice,Becka,James,Jeffrey,John),Sex=c(F,F,M,M,M),Age=c(13,13,12,13,12),Height=c(56.5,65.3,57.3,62.5,59.0),Weight=c(84.0,98.0,83.0,84.0,99.5);dfLst=list(Name=c(Alice,Becka,James,Jeffrey,John),Sex=c(F,F,M,M,M),Age=c(13,13

3、,12,13,12),Height=c(56.5,65.3,57.3,62.5,59.0),Weight=c(84.0,98.0,83.0,84.0,99.5)LstLstNameLstNameLst1Lst1Lst$Namedf=as.data.frame(Lst)dfx=array(1:6,dim=c(2,3)as.data.frame(x)#数据框的引用df1:2,3:5dfHeightdf$Weightnames(df)#此属性一定非空rownames(df)=c(one,two,three,four,five)dfattach(df)r=Height/Weightrdf$r=rnam

4、es(df)detach()r=Height/Weight#2.矩阵的运算a=diag(1:3)a21=1a#1转置运算t(a)#2行列式det(a)#3向量内积x=1:5y=2*1:5x%*%yt(x)%*%ycrossprod(x,y)#4向量的外积x%*%t(y)tcrossprod(x,y)outer(x,y)x%o%y#矩阵的乘法a=array(1:9,dim=c(3,3)b=array(9:1,dim=c(3,3)x=1:3a*ba%*%bx%*%a%*%xcrossprod(a,b)#t(a)%*%btcrossprod(a,b)#a%*%t(b)#矩阵的逆solve(a)b=1

5、:3solve(a,b)#ax=b的解#矩阵的特征值与特征向量sm=eigen(a)sme=diag(1:3)svde=svd(e)svdeattach(svde)u%*%diag(d)%*%t(v)#与矩阵运算有关的函数#取维数a=diag(1:4)nrow(a)ncol(a)#矩阵的合并x1=rbind(c(1,2),c(3,4)x2=x1+10x3=cbind(x1,x2)x3x4=rbind(x1,x2)x4cbind(1,x1)#矩阵的拉直a=matrix(1:6,ncol=2,dimnames=list(c(one,two,three),c(first,second),byrow=

6、T)as.vector(a)#apply函数apply(a,1,mean)apply(a,2,sum)tapply(1:5,factor(c(f,f,m,m,m),mean)#第二题#产生随机数x=rnorm(100,0,1)x#画随机数的直方图hist(x,freq=F)#核密度曲线density(x)lines(density(x),col=blue)#添加正态分布分布函数y=seq(-4,3,0.2)lines(y,dnorm(y,mean(x),sd(x),col=red)#画随机数的经验分布函数z=rnorm(50,0,1)plot(ecdf(z),do.p=F,verticals=

7、T)d=seq(-3,2,0.2)lines(d,pnorm(d,mean(z),sd(z),col=red)y=rpois(100,2)plot(ecdf(y),col=red,verticals=T,do.p=F)x=0:8lines(x,ppois(x,mean(y),col=blue)w=c(75,64,47.4,66.9,62.2,62.2,58.7,63.5,66.6,64.0,57.0,69.0,56.9,50.0,72.0)hist(w,freq=F)lines(density(w),col=blue)x=44:76lines(x,dnorm(x,mean(w),sd(w),c

8、ol=red)plot(ecdf(w),do.p=F,verticals=T)lines(x,pnorm(x,mean(w),sd(w),col=red)#编写函数求随机数的各种描述统计量data_outline=function(x)n=length(x)m=mean(x)v=var(x)s=sd(x)me=median(x)cv=100*s/mcss=sum(x-m)2)uss=sum(x2)R=max(x)-min(x)#样本极差R1=quantile(x,3/4)-quantile(x,1/4)#四分位差sm=s/sqrt(n)#样本标准误g1=n/(n-1)/(n-2)*sum(x-

9、m)3)/s3g2=n*(n+1)/(n-1)/(n-2)/(n-3)*sum(x-m)4)/s4-3*(n-1)2/(n-2)/(n-3)data.frame(N=n,Mean=m,Var=v,std_dev=s,Median=me,std_mean=sm,CV=cv,CSS=css,USS=uss,R=R,R1=R1,Skewness=g1,Kurtosis=g2,s=1)x=rnorm(100)data_outline(x)#第三题#r,p,q,drnorm(100,0,1)pnorm(1:5,0,1)dnorm(-3:3,0,1)qnorm(seq(0,1,0.25),

10、0,1)rbeta(100,2,2)rbinom(100,100,0.5)pbinom(1:100,100,0.5)dbinom(1:5,100,0.5)qbinom(seq(0,1,0.1),100,0.5)rchisq(100,1)qchisq(seq(0,1,0.2),10)pchisq(1:10,10)dchisq(1:10,10)rexp(100,0.5)rpois(100,2)ppois(1:1000,2)dpois(1:100,2)runif(100,0,1)qunif(c(0,0.2,0.8),0,1)punif(seq(0,1,0.2),0,1)dunif(seq(0,1,0

11、.01),0,1)rt(100,2)qt(0.8,2)pt(-3:3,2)dt(-3:3,2)rf(100,1,2)qf(0.8,1,2)#四置信区间#1#(1)sigma已知interval_estimate1=function(x,side=0,sigma=1,alpha=0.05)xb=mean(x);n=length(x)if(side0)tmp=sigma/sqrt(n)*qnorm(1-alpha)a=xb-tmp;b=Infelsetmp=sigma/sqrt(n)*qnorm(1-alpha/2)a=xb-tmp;b=xb+tmpdata.frame(mean=xb,a=a,b

12、=b)x=rnorm(100,0,4)interval_estimate1(x,sigma=4,side=0)interval_estimate1(x,sigma=4,side=-1)interval_estimate1(x,sigma=4,side=1)#(2)sigma未知interval_estimate2=function(x,side=0,alpha=0.05)xb=mean(x);n=length(x)if(side0)tmp=sd(x)/sqrt(n)*qt(1-alpha,n-1)a=xb-tmp;b=Infelsetmp=sd(x)/sqrt(n)*qt(1-alpha/2,

13、n-1)a=xb-tmp;b=xb+tmpdata.frame(mean=xb,a=a,b=b)x=rnorm(100,0,1)interval_estimate2(x,side=-1)interval_estimate2(x,side=0)interval_estimate2(x,side=1)t.test(x,side=-1)t.test(x,side=0)t.test(x,side=1)#两个总体sigma1=sigma2但未知interval_estimate3=function(x,y,alpha=0.05)xb=mean(x);yb=mean(y)n1=length(x);n2=l

14、ength(y)sw=(n1-1)*var(x)+(n2-1)*var(y)/(n1+n1-2)tmp=sqrt(1/n1+1/n2)*sw)*qt(1-alpha/2,n1+n2-2)a=xb-yb-tmp;b=xb-yb+tmpdata.frame(mean=xb-yb,a=a,b=b)x=rnorm(100,0,1)y=rnorm(100,1,1)interval_estimate3(x,y)t.test(x,y)-0.03643479 - 0.98699097#第五题假设检验#(1)sigam已知,双侧,检验mu=mu0mean.test1=function(x,mu=0,sigma=

15、1)xb=mean(x);n=length(x)z=(xb-mu)/sigma*sqrt(n)p=pnorm(z)if(p=1/2)P=2*pelseP=2*(1-p)data.frame(mean=xb,Z=z,p_value=P)x=rnorm(100,0,2)mean.test1(x,mu=0,sigma=2)#(2)sigma未知,双侧,检验mu=mu0mean.test2=function(x,mu=0)xb=mean(x);n=length(x)z=(xb-mu)/sd(x)*sqrt(n)p=pt(z,n-1)if(p=1/2)P=2*pelseP=2*(1-p)data.fra

16、me(mean=xb,Z=z,p_value=P)x=rnorm(100)mean.test2(x,mu=0)t.test(x,mu=0,alt=two.side)#两个总体 sigma1=sigma2但未知,检验mu1=mu2mean.test3=function(x,y,mu=0)xb=mean(x);yb=mean(y)n1=length(x);n2=length(y)sw=(n1-1)*var(x)+(n2-1)*var(y)/(n1+n2-2)t=(xb-yb-mu)/sqrt(sw*(1/n1+1/n2)p=pt(t,n1+n2-1)if(p=50),100)y=rbinom(10

17、0,100,0.4)binom.test(sum(xy),length(x),alt=g)#第七题#相关性检验x=1:6y=6:1z=2:7cor.test(x,y,alt=g,method=spearman)cor.test(x,z,alt=g,method=spearman)#无节点x=c(2,3,1,4,5,8,6)y=1:7cor.test(x,y,alt=g,method=spearman,correct=T)n=length(x)r=rank(x)rR=rank(y)Rs=sum(r-R)2)rho=1-6*s/n/(n2-1)rho#有节点x=c(2,3,4,4,5,8,6)y=

18、1:7cor.test(x,y,alt=g,method=spearman,correct=T)exact=F,n=length(x)r=rank(x)rR=rank(y)Rsxy=sum(r*R)sx=sum(r2)sy=sum(y2)t=n*(n+1)/2)2rho=(sxy-t)/sqrt(sx-t)/sqrt(sy-t)rho#第八题 回归x=c(seq(0.1,0.18,0.01),0.20,0.21,0.23)y=c(42,43.5,45,45.5,45,47.5,49,53,50,55,55,60)#散点图plot(x,y)#做回归lm.sol=lm(yx)lm.sol=lm(y1+x)#汇总统计量summary(lm.sol)#画回归线abline(lm.sol)#求回归系数的区间估计=function(lm.sol,alpha=0.05)A=summary(lm.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论