拉压强度-变形-变形能-静不定(水电)教学课件_第1页
拉压强度-变形-变形能-静不定(水电)教学课件_第2页
拉压强度-变形-变形能-静不定(水电)教学课件_第3页
拉压强度-变形-变形能-静不定(水电)教学课件_第4页
拉压强度-变形-变形能-静不定(水电)教学课件_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 2007年12月26日星期三 武汉大学土建-工程力学 4 2.极限应力 失效时的特征应力 -极限应力 jx 3.许用应力 n jx 1.工作应力工作应力 工作应力是否允许超越或接近极限应力?工作应力是否允许超越或接近极限应力? 构件工作时的应力构件工作时的应力 n安全系数(大于1) 2007年12月26日星期三 武汉大学土建-工程力学 5 设计截面尺寸:设计截面尺寸: ; max AN )( max NfP 依强度准则可进行三种强度计算: 校核强度:校核强度: 许可载荷:许可载荷: 4.强度条件 A N max max A N max max max N A 7/23/2021 武汉大学土建

2、-工程力学 6 强度破坏实例强度破坏实例 实例实例1:高压容器螺栓断裂:高压容器螺栓断裂 实例实例2:甘肃:甘肃500人拔河人拔河 钢丝绳断裂,伤钢丝绳断裂,伤14人,人,4人重伤人重伤 2007年12月26日星期三 武汉大学土建-工程力学 7 例例 已知一圆杆受拉力P =25 k N,直径 d =14mm,许用应力 =170MPa,试校核此杆是否满足强度要求。 解: 轴力:N = P =25kN MPa162 0140143 102544 2 3 2max .d P A N 应力: 强度校核: 170MPa162MPa max 结论:此杆满足强度要求,能够正常工作。 2007年12月26日星

3、期三 武汉大学土建-工程力学 8 例例 已知三铰屋架如图,承受竖向均布载荷,载荷的分布集 度为:q =4.2kN/m,屋架中的钢拉杆直径 d =16 mm,许用应 力=170M Pa。 试校核刚拉杆的强度。 钢拉杆 4.2m q 8.5m 整体平衡求支反力 解: 钢拉杆 8.5m q 4.2m RARB HA kN5 .19 0 0 0 AB AX Rm HF 应力: 强度校核与结论: MPa 170 MPa 131 max 此杆满足强度要求,是安全的。 MPa131 0160143 103264 d 4 2 3 2max . . P A N 局部平衡求 轴力: q RA HA RC HC N

4、 kN326 0.Nm C 2007年12月26日星期三 武汉大学土建-工程力学 11 。 sin ; /hL /NA BD BBD 例例 简易起重机构如图,AC为刚性梁,吊车与吊起重物总重 为P,为使 BD杆最轻,角 应为何值? 已知 BD 杆的许用应力 为。 ; BDBDL AV 分析: x L h P AB C D PxhNm BDA )ctg() sin( , 0 cosh PL NBD /NA BD BD杆面积A: 解: BD杆内力N( ): 取AC为研究对象,如图 YA XA NB x L P AB C YA XA NB x L P AB C 求VBD 的最小值: ; 2sin 2

5、 sin PL /AhALV BD 2 45 min o PL V,时 2007年12月26日星期三 武汉大学土建-工程力学 14 例题例题 已知:已知: A1 = 200 mm2, A2= 150 mm2, =115 MPa 求:许可荷载求:许可荷载P 解:解:1. 内力计算内力计算 解出解出 N1 = 0.732 P , N2 = 0.518 P 取节点取节点 C FX = 0, N2sin45N1sin30 = 0 FY = 0, N1cos30N2cos45P = 0 p C AB 45 30 N2 N1 x y 3045 C P 2007年12月26日星期三 武汉大学土建-工程力学

6、15 2.计算计算 P 1 1 A N 1 732. 0 A P A1 0.732 = 200115 0.732 =31.4 kN N2 A2 = 0.518P A2 A2 0.518 = 150115 0.518 = 33.3 kN P= 31.4 kN 得得 P 得得 P 由由 由由 N1 = 0.732 P N2 = 0.518 P 2007年12月26日星期三 武汉大学土建-工程力学 16 p C AB 45 30 N2 N1 x y 3045 C P 2007年12月26日星期三 武汉大学土建-工程力学 17 b l b1 l1 PP l l 2007年12月26日星期三 武汉大学土

7、建-工程力学 18 b l EA Nl EA Pl l b1 l1 PP A Pl l 2007年12月26日星期三 武汉大学土建-工程力学 19 b l EA Nl l EA N l l b1 l1 FF E E 2007年12月26日星期三 武汉大学土建-工程力学 20 常数 b l b1 l1 P P = b1- -b b b b 2007年12月26日星期三 武汉大学土建-工程力学 21 l P1 P4 P3P2 n i ii EA lN l 1 2007年12月26日星期三 武汉大学土建-工程力学 22 l NN dx A(x) () )( d x AE xN ld x xEA N

8、l l d )( dxx d 2007年12月26日星期三 武汉大学土建-工程力学 23 x EA N l lx x d )( )( l N N(x)N(x) dx A(x) () )( )( d x x AE xN ld dxx b 2007年12月26日星期三 武汉大学土建-工程力学 24 1 2 ( ) cos2 21 P NNN y P N1 N2 x A 2007年12月26日星期三 武汉大学土建-工程力学 25 EA Nl l cos2EA Pl A B C 1 2 P l l cos2 F N 2007年12月26日星期三 武汉大学土建-工程力学 26 () cos l AAf

9、A 2 cos2EA Fl cos2EA Fl l A B C 1 2 l l A fA A 2007年12月26日星期三 武汉大学土建-工程力学 27 总结与讨论总结与讨论 max max A N EA Nl l = E 2007年12月26日星期三 武汉大学土建-工程力学 28 普遍原理普遍原理 便于得到多种求位移方法,用于复杂变形计算便于得到多种求位移方法,用于复杂变形计算 求近似值的有效方法,用于动荷、稳定等求近似值的有效方法,用于动荷、稳定等 2007年12月26日星期三 武汉大学土建-工程力学 29 WU 2007年12月26日星期三 武汉大学土建-工程力学 30 2007年12月

10、26日星期三 武汉大学土建-工程力学 31 2007年12月26日星期三 武汉大学土建-工程力学 32 F F O F O FW 0 d FW 2 1 F F d 2007年12月26日星期三 武汉大学土建-工程力学 33 nnii FFFFW 2 1 2 1 2 1 2 1 2211 n i ii FWU 1 2 1 多个力做功多个力做功 2007年12月26日星期三 武汉大学土建-工程力学 34 2007年12月26日星期三 武汉大学土建-工程力学 35 n i ii FWU 1 2 1 2007年12月26日星期三 武汉大学土建-工程力学 36 l EA lN lFWU 22 1 2 (

11、) x EA xN U l d 2 2 l F F O l F EA Nl l 2007年12月26日星期三 武汉大学土建-工程力学 37 1 2 y P N1 N2 x A 静不定静不定(超静定超静定)问题问题 (Statically indeterminate) 一一. 静定问题静定问题 l P 2007年12月26日星期三 武汉大学土建-工程力学 38 1 2 y P N1 N2 x A 二二. 静不定(超静定)问题静不定(超静定)问题 l P 3 N3 2007年12月26日星期三 武汉大学土建-工程力学 39 平衡方程; 补充方程变形协调方程; 物理方程弹性定律; 联立求解 三三.

12、解静不定(超静定)问题的步骤:解静不定(超静定)问题的步骤: 2007年12月26日星期三 武汉大学土建-工程力学 40 N1N1 N2N2 杆杆 : E1A1 端板端板 PP 管管 : E2A2 l 例:如图所示的组合杆,两杆的例:如图所示的组合杆,两杆的 材料不同。求它们的内力材料不同。求它们的内力 2007年12月26日星期三 武汉大学土建-工程力学 41 PN1 0.5N2 0.5N2 S SF FX=0 N1+ N2 - - P=0 (1) 解解. 静力平衡(端板):静力平衡(端板): PP 2007年12月26日星期三 武汉大学土建-工程力学 42 l l = l1 = l2 l

13、2= N2 l E2 A2 l1= N1 l E1 A1 变形协调方程:变形协调方程: l 物理方程:物理方程: 即:即: 22 2 11 1 AE lN AE lN 2007年12月26日星期三 武汉大学土建-工程力学 43 l N1= PE1A1 E1A1+ E2A2 N2= PE2A2 E1A1+ E2A2 联立解联立解、两式,得两式,得: l 2007年12月26日星期三 武汉大学土建-工程力学 44 1 2 3 例:例: 1、2两杆有相同的两杆有相同的 抗拉压抗拉压 刚度刚度EA, 长度为长度为L,3杆的抗杆的抗 拉压刚度为拉压刚度为E3A3。 求:求:1、2、3三杆的内力及应力三杆

14、的内力及应力 、P 已知:已知: 2007年12月26日星期三 武汉大学土建-工程力学 45 1 2 y P N1 N2 x A 3 N3 解:解:1.考虑考虑A节点平衡节点平衡 2007年12月26日星期三 武汉大学土建-工程力学 46 x 2.变形协调方程变形协调方程 A B C 1 2 l1 l2 A A 3 l3 EA LN EA LN l 222 2 cos 2 3 l l 3.物理方程物理方程 33 3 33 33 3 AE LCOSN AE LN l 2007年12月26日星期三 武汉大学土建-工程力学 47 x 将物理方程代入变形协调方程,将物理方程代入变形协调方程, 得得 A B C 1 2 l1 l2 A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论