平面向量四心问题(最全)_第1页
平面向量四心问题(最全)_第2页
平面向量四心问题(最全)_第3页
平面向量四心问题(最全)_第4页
平面向量四心问题(最全)_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、如果您需要使用本文档,请点击下载按钮下载!近年来,对于三角形的“四心”问题的考察时有发生,尤其是和平面向量相结合来考察很普遍,难度上偏向中等,只要对于这方面的知识准备充分,就能应付自如.下面就平面向量和三角形的“四心”问题的类型题做一阐述:一、 重心问题三角形“重心”是三角形三条中线的交点,所以“重心”就在中线上.例1 已知O是平面上一定点,A,B,C是平面上不共线的三个点,动点P 满足:,则P的轨迹一定通过ABC的 ( ) 外心 内心 C 重心 D 垂心解析:如图1,以AB,AC为邻边构造平行四边形ABCD,E为对角线的交点,根据向量平行四边形法则,因为,所以,上式可化为,E在直线AP上,因

2、为AE为的中线,所以选 C.点评:本题在解题的过程中将平面向量的有关运算与平行四边形的对角线互相平分及三角形重心性质等相关知识巧妙结合.二、 垂心问题三角形“垂心”是三角形三条高的交点,所以“垂心”就在高线上.例2 P是ABC所在平面上一点,若,则P是ABC的( ).1 / 10如果您需要使用本文档,请点击下载按钮下载!A外心 B内心 C重心 D垂心解析:由. 即. 则, 所以P为的垂心. 故选D.点评:本题考查平面向量有关运算,及“数量积为零,则两向量所在直线垂直”、三角形垂心定义等相关知识.将三角形垂心的定义与平面向量有关运算及“数量积为零,则两向量所在直线垂直” 等相关知识巧妙结合.三、

3、 内心问题三角形“内心”是三角形三条内角平分线的交点,所以“内心”就在内角平分线线上.例3 已知P是ABC所在平面内的一动点,且点P满足,则动点P一定过ABC的 .A、重心 B、垂心 C、外心 D、内心解析:如图2所示,因为是向量的单位向量设与方向上的单位向量分别为, 又,则原式可化为,由菱形的基本性质知AP平分,那么在中,AP平分,则知选B.2 / 10如果您需要使用本文档,请点击下载按钮下载!点评:这道题给人的印象当然是“新颖、陌生”,首先是什么?想想一个非零向量除以它的模不就是单位向量? 此题所用的都必须是简单的基本知识,如向量的加减法、向量的基本定理、菱形的基本性质、角平分线的性质等,

4、若十分熟悉,又能迅速地将它们迁移到一起,这道题就迎刃而解了.四、 外心问题三角形“外心”是三角形三条边的垂直平分线的交点,所以“外心”就在垂直平分线线上.例4 已知O是ABC内的一点,若,则O是ABC的 .A重心 B.垂心 C.外心 D.内心解析:,由向量模的定义知到的三顶点距离相等.故是的外心,选C.点评:本题将平面向量模的定义与三角形外心的定义及性质等相关知识巧妙结合三角形的“四心”与平面向量 向量本身是一个几何概念,具有代数形式和几何形式两种表示方法,易于数形结合,而且向量问题在进行数形结合时具有新形式、新特点,因此可称为高中数学的一个交汇点。三角形的“四心”(外心、内心、重心、垂心)是

5、与三角形有关的一些特殊点,各自有一些特殊的性质。在高考中,往往将“向量作为载体”对三角形的“四心”进行考查。这就需要我们在熟悉向量的代数运算的基础上读懂向量的几何意义。与三角形的“四心”有关的一些常见的重要的向量关系式有: 设,则向量必平分BAC,该向量必通过ABC的内心; 设,则向量必平分BAC的邻补角3 / 10如果您需要使用本文档,请点击下载按钮下载! 设,则向量必垂直于边BC,该向量必通过ABC的垂心 ABC中一定过的中点,通过ABC的重心 点是ABC的外心 点是ABC的重心 点是ABC的垂心 点是ABC的内心 (其中a、b、c为ABC三边) ABC的外心、重心、垂心共线,即 设为AB

6、C所在平面内任意一点,G为ABC的重心,I为ABC的内心,则有 并且重心G(,) 内心I(,)A F E C TB例1:(2003年全国高考题)是平面上一定点,A、B、C是平面上不共线的三点,动点P满足,则动点P的轨迹一定通过ABC的( )(A)外心 (B)内心 (C)重心 (D)垂心 事实上如图设都是单位向量易知四边形AETF是菱形 故选答案B例2:(2005年北京市东城区高三模拟题)为ABC所在平面内一点,如果,则O必为ABC的( )(A)外心 (B)内心 (C)重心 (D)垂心 4 / 10如果您需要使用本文档,请点击下载按钮下载!事实上OBCA 故选答案D例3:已知O为三角形ABC所在

7、平面内一点,且满足,则点O是三角形ABC的( )(A)外心 (B)内心 (C)重心 (D)垂心 事实上由条件可推出 故选答案D例4:设是平面上一定点,A、B、C是平面上不共线的三点, 动点P满足,则动点P的轨迹一定通过ABC的( )(A)外心 (B)内心 (C)重心 (D)垂心 事实上 故选答案D例5、已知向量满足条件,求证:是正三角形分析对于本题中的条件,容易想到,点是的外心,而另一个条件表明,点是的重心故本题可描述为,若存在一个点既是三角形的重心也是外心,则该三角形一定是正三角形在1951年高考中有一道考题,原题是:若一三角形的重心与外接圆圆心重合,则此三角形为何种三角形?与本题实质是相同

8、的 显然,本题中的条件可改为高考原题例6、O是平面上一 定点,A、B、C是平面上不共线的三个点,动点P满足 则P的轨迹一定通过ABC的( )6 / 10如果您需要使用本文档,请点击下载按钮下载!A外心B内心C重心D垂心分析已知等式即,设,显然都是单位向量,以二者为邻边构造平行四边形,则结果为菱形,故为的平分线,选例7、的外接圆的圆心为O,两条边上的高的交点为H,则实数m = 分析:本题除了利用特殊三角形求解外,纯粹利用向量知识推导则比较复杂,更加重要的一点是缺乏几何直观解法如下,由已知,有向量等式,将其中的向量分解,向已知等式形式靠拢,有,将已知代入,有,即,由是外心,得,由于是任意三角形,则

9、不恒为,故只有恒成立或者,过点作与,则是的中点,有;是垂心,则,故与共线,设,则,又,故可得,有,得根据已知式子中的部分,很容易想到三角形的重心坐标公式,设三角形的重心为,是平面内任一点,均有,由题意,题目显然叙述的是一个一般的结论,先作图使问题直观化,如图,由图上观察,很容易猜想到,至少有两个产生猜想的诱因,其一是,均与三角形的边6 / 10如果您需要使用本文档,请点击下载按钮下载!垂直,则;其二,点是三角形的中线的三等分点此时,会先猜想,但现在缺少一个关键的条件,即,这样由两个三角形的两边长对应成比例,同时,夹角对应相等可得相似当然,在考试时,只需大胆使用,也可利用平面几何知识进行证明本题

10、结论是关于三角形的欧拉定理,即设O、G、H分别是ABC的外心、重心和垂心,则O、G、H三点共线,且OGGH12,利用向量表示就是例8、点O是三角形ABC所在平面内的一点,满足,则点O是的()A三个内角的角平分线的交点B三条边的垂直平分线的交点C三条中线的交点D三条高的交点分析移项后不难得出,点O是的垂心,选3 推广应用题例9在内求一点,使最小分析如图,构造向量解决取为基向量,设,有于是,当时,最小,此时,即,则点为的重心例10已知为所在平面内一点,满足7 / 10如果您需要使用本文档,请点击下载按钮下载!,则为的心分析将,也类似展开代入,已知等式与例的条件一样也可移项后,分解因式合并化简,为垂心例11已知为的外心,求证:分析构造坐标系证明如图,以为坐标原点,在轴的正半轴,在轴的上方,直线的方程是,由于点与点必在直线的同侧,且,因此有,得直线的方程是,由于点与点必在直线的同侧,且,因此有,得于是,容易验证,又,又,则所证成立总结:知识综述(一)三角形各心的概念介绍1、重心三角形的三条中线的交点;2、垂心三角形的三条垂线的交点;3、内心三角形的三个内角角平分线的交点(三角形内切圆的圆心);4、外心三角形的三条垂直平分线的交点(三角形外接圆的圆心)根据概念,可知各心的特征条件比如:重心将中线长度分成2:1;垂线与对应边的向量积

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论