![应用于电气系统的可编程序控制器—外文翻译_第1页](http://file2.renrendoc.com/fileroot_temp3/2021-7/9/656cb3e1-bb50-478a-8161-9263dbe777c6/656cb3e1-bb50-478a-8161-9263dbe777c61.gif)
![应用于电气系统的可编程序控制器—外文翻译_第2页](http://file2.renrendoc.com/fileroot_temp3/2021-7/9/656cb3e1-bb50-478a-8161-9263dbe777c6/656cb3e1-bb50-478a-8161-9263dbe777c62.gif)
![应用于电气系统的可编程序控制器—外文翻译_第3页](http://file2.renrendoc.com/fileroot_temp3/2021-7/9/656cb3e1-bb50-478a-8161-9263dbe777c6/656cb3e1-bb50-478a-8161-9263dbe777c63.gif)
![应用于电气系统的可编程序控制器—外文翻译_第4页](http://file2.renrendoc.com/fileroot_temp3/2021-7/9/656cb3e1-bb50-478a-8161-9263dbe777c6/656cb3e1-bb50-478a-8161-9263dbe777c64.gif)
![应用于电气系统的可编程序控制器—外文翻译_第5页](http://file2.renrendoc.com/fileroot_temp3/2021-7/9/656cb3e1-bb50-478a-8161-9263dbe777c6/656cb3e1-bb50-478a-8161-9263dbe777c65.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、附录附录1programmable designed for electro-pneumatic systems controllerthis project deals with the study of electro-pneumatic systems and the programmable controller that provides an effective and easy way to control the sequence of the pneumatic actuators movement and the states of pneumaticsystem. the
2、 project of a specifi c controller for pneumatic applicationsjoin the study of automation design and the control processing of pneumaticsystems with the electronic design based on microcontrollers to implementthe resources of the controller. 1. introductionthe automation systems that use electro-pne
3、umatic technology are formed mainly by three kinds of elements: actuators or motors, sensors or buttonsand control elements like valves.nowadays, most of the control elements used to execute the logic of the system were substituted by the programmable logic controller(plc). sensors and switches are
4、plugged as inputs and the direct control valves for the actuators are plugged as outputs.an internal program executes all the logic necessary to the sequence of the movements, simulatesother components like counter,timer and control the status of the system.with the use of the plc,the project wins a
5、gility,because it is possible to create and simulate the system as many times as needed.therefore,timecan be saved,risk of mistakes reduced and complexity can be increased usingthe same elements.a conventional plc,that is possible to find on the market from many companies,offers many resources to co
6、ntrol not only pneumatic systems, but all kinds of system that uses electrical components. the plc can be very versatile and robust to be applied in many kinds application of in the industry or even security system and automation of buildings.because of those characteristics, in some applications th
7、e plc offers to much resources that are not even used to control the system, electro-pneumatic system is one of this kind of application. the use of plc, especially for small size systems, can be very expensive for the automation project.an alternative in this case is to create a specific controller
8、 that can offer the exactly size and resources that the project needs3,4. this can be madeusing microcontrollers as the base of this controller.the controller, based on microcontroller, can be very specific and adapted to only one kind of machine or it can work as a generic controller thatcan be pro
9、grammed as a usual plc and work with logic that can be changed. all these characteristics depend on what is needed and how much experiencethe designer has with developing an electronic circuit and firmware for microcontroller. but the main advantage of design the controller with the microcontroller
10、is that the designer has the total knowledge of his controller, which makes it possible to control the size of the controller, change the complexity and the application of it. it means that the project gets more independence from other companies, but at the same time the responsibility of the contro
11、l of the system stays at the designer hands.2. electro-pneumatic systemon automation system one can find three basic components mentioned before, plus a logic circuit that controls the system. an adequate technique is neededto project the logic circuit and integrate all the necessary components to e
12、xecute the sequence of mo vements properly.for a simple direct sequence of movement an intuitive method can be used1,5, but for indirect or more complex sequences the intuition can generate a very complicated circuit and signal mistakes. it is necessary to use another method that can save time of th
13、e project, make a clean circuit, can eliminate occasional signal overlapping and redundant circuits. the presented method is called step-by-step or algorithmic1,5, it is valid for pneumatic and electro-pneumatic systems and it was used as a base in this work. the method consists of designing the sys
14、tems based on standard circuits made for each change on the state of the actuators, these changes are called steps.the first part is to design those kinds of standard circuits for each step, the next task is to link the standard circuits and the last part is to connect the control elements that rece
15、ive signals from sensors, switches and the previous movements, and giv e the air or electricity to the supply lines of each step. in figs. 1 and2 the standard circuits are drawn for pneumatic and electro-pneumatic system8. it is possible to see the relations with the previous and the next steps.3. t
16、he method applied inside the controllerhe result of the method presented before is a sequence of movements of the actuator that is well defined by steps. it means that each change on the position of the actuators is a new state of the system and the transition between states is called step. the stan
17、dard circuit described before helps the designer to define the states of the systems and to define the condition to each change between the states. in the end of the design, the system is defined by a sequence that never chances and states that have the inputs and the outputs well defined. the input
18、s are the condition for the transition and the outputs are the result of the transition.all the configuration of those steps stays inside of the microcontroller and is executed the same way it was designed. the sequences of strings are programmed inside the controller with 5 bytes; each string has t
19、he configuration of one step of the process there are two bytes for the inputs, one byte forthe outputs and two more for the other configurationsand auxiliary functions of the step. after programming, this sequence of strings is saved inside of an on-volatile memory of the microcontroller, so they c
20、an be read and executedthe controller task is not to work in the same way as a conventional plc, but the purpose of it is to be an example of a versatile controller that is design for an specific area. a conventional plc process the control of the system using a cycle where it makes an image of the
21、inputs, execute all the conditions defined by the configuration programmed inside, and then update the state of the outputs. this controller works in a different way, where it read the configuration of the step, wait the condition of inputs to be satisfied, then update the state or the outputs and a
22、fter that jump to the next step and start the process again.it can generate some limitations, as the fact that this controller cannot execute, inside the program, movements that must be repeated for some time, but this problem can be solved with some external logic components. another limitation is
23、that the contro ller cannot be applied on systems that have no sequence. these limitations are a characteristic of the system that must be analyzed for each application.4. characteristics of the controllerthe controller is based on the microchip microcontroller pic16f877 6,7 with40 pins, and it has
24、all the resources needed for this project it has enough pins for all the components, serial communication implemented in circuit, eeprom memory to save all the configuration of the system and the sequence of steps. for the execution of the main program it offers complete resources as timers and inte
25、rruptions.the list of resources of the controller was created to explore all the capacity of the microcontroller to make it as complete as possible. during the step, the program chooses how to use the resources reading the configuration string of the step. this string has two bytes for digital input
26、s, one used as a mask and the other one used as a value expected. one byte is used to configure the outputs value. one bytes more is used for the internal timer, the analog input or time-out. the eeprom memory inside is256 bytes length that is enough to save the string of the steps, with this charac
27、teristic it is possible to save between48 steps(table1).the controller(fig.3) has also a display and some buttons that are used with an interactive menu to program the sequence of steps and other configurations.4.1. interaction componentsfor the real application the controller must have some element
28、s to interact with the final user and to offer a complete monitoring of the system resources that are available to the designer while creating the logic control of the pneumatic system(fig.3): interactive mode of work; function available on the main program for didactic purposes, the user gives the
29、signal to execute the step. lcd display, which shows the status of the system, values of inputs, outputs, timer and statistics of the sequence execution. beep to give important alerts, stop, start and emergency. leds to show power on and others to show the state of inputs and outputs.4.2. securityto
30、 make the final application works property, a correct configuration to execute the steps in the right way is needed, but more then that it must offer solutions in case of bad functioning or problems in the execution of the sequence. the controller offers the possibility to configure two internal vir
31、tual circ uits that work in parallel to the principal. these two circuits can be used as emergency or reset buttons and can return the system to a certain state at any time2. there are two inputs that work with interruption to get an immediate access to these functions. it is possible to configure t
32、he position, the buttons and the value of time-out of the system.4.3. user interfacethe sequence of strings can be programmed using the interface elements of the controller. a computer interface can also be used to generate the user program easily. with a good documentation the final user can use th
33、e interface to configure the strings of bytes that define the steps of the sequence. but it is possible to create a program with visual resources that works as a translator to the user, it changes his work to the values that the controller understands.to implement the communication between the compu
34、ter interface and the controller a simple protocol with check sum and number of bytes is the minimum requirements to guarantee the integrity of the data.4.4. firmwarethe main loop works by reading the strings of the steps from the eeprom memory that has all the information about the steps.in each st
35、ep, the status of the system is saved on the memory and it is shown on the display too. depending of the user configuration, it can use the interruption to work with the emergency circuit or time-out to keep the system safety. in fig.4,a block diagram of micro controller main program is presented.5.
36、 example of electro-pneumatic systemthe system is not a representation of a specific machine, but it is made with some common movements and components found in a real one. the system is composed of four actuators. the actuators a, b and c are double acting and d-single acting. actuator a advances an
37、d stays in specified position till the end of the cycle, it could work fixing an object to the next action for example(fig. 5), it is the first step. when a reaches the end position, actuator c starts his work together with b, making as many cycles as possible during the advancing of b. it depends o
38、n how fast actuator b is advancing; the speed is regulated by a flowing control valve. it was the second step. b and c are examples of actuators working together, while b pushes an object slowly, crepeats its work for some time.when b reaches the final position, c stops immediately its cycle and com
39、es back to the initial position. the actuator d is a single acting one with spring return and works together with the back of c, it is the third step. d works making very fast forward and backward movement, just one time. its backward movement is the fourth step. d could be a tool to make a hole on
40、the object.when d reaches the initial position, a and b return too, it is the fifth step.fig. 6 shows the first part of the designing process where all the movements of each step should be defined2. (a+)means that the actuator a moves to the advanced position and(a) to the initial position. the move
41、ments that happen at the same time are joined together in the same step. the system has five steps.these two representations of the system(figs. 5 and6) together are enough to describe correctly all the sequence with them is possible to design the whole control circuit with the necessary logic compo
42、nents. but till this time, it is not a complete system, because it is missing some auxiliary elements that are not included in this draws because they work in parallel with the main sequence.these auxiliary elements give more function to the circuit and are very important to the final application; t
43、he most important of them is the parallel circuit linked with all the others steps. that circuit should be able to stop the sequence at any time a nd change the state of the actuators to a specific position. this kind of circuit can be used as a reset or emergency buttons.the next figs. 7 and8 show
44、the result of using the method without the controller. these pictures are the electric diagram of the control circuit of the example, including sensors, buttons and the coils of the electrical valves.the auxiliary elements are included, like the automatic/manual switcher that permit a continuous wor
45、k and the two start buttons that make the operator of a machine use their two hands to start the process, reducing the risk of accidents.6. changing the example to a user programin the previous chapter, the electro-pneumatic circuits were presented, used to begin the study of the requires to control
46、 a system that work with steps and must offer all the functional elements to be used in a real application. but, as explained above, using a plc or this specific controller, the control becomes easier and the complexity can be increase also.table2 shows a resume of the elements that are necessary to
47、 control the presented examplewith the time diagram, the step sequence and the elements of the system described in table2 and figs. 5 and6 it is possible to create the configuration of the steps that can be sent to the controller(tables3 and4).while using a conventional plc, the user should pay atte
48、ntion to the logic of the circuit when drawing the electric diagram on the interface(figs. 7 and8), using the programmable controller, described in this work, the user must know only the concept of the method and program only the configuration of each step.it means that, with a conventional plc, the
49、 user must draw the relation between the lines and the draw makes it hard to differentiate the steps of the sequence. normally, one needs to execute a simulation on the interface to find mistakes on the logicthe new programming allows that the configuration of the steps be separated, like described
50、by the method the sequence is defined by itself and the steps are described only by the inputs and outputs for each step.the structure of the configuration follows the order:1-byte:features of the step;2-byte:mask for the inputs;3-byte:value expected on the inputs;4-byte:value for the outputs;5-byte
51、:value for the extra functiontable5 shows how the user program is saved inside the controller, this is the program that describes the control of the example shown before.the sequence can be defined by25 bytes. these bytes can be divided in five strings with5 bytes each that define each step of the s
52、equence(figs. 9 and10).7. conclusionthe controller developed for this work(fig. 11) shows that it is possible to create a very useful programmable controller based on microcontroller. external memories or external timers were not used in case to explore the resources that the microcontroller offers
53、inside outside the microcontroller, there are only components to implement the outputs, inputs, analog input, display for the interface and the serial communication.using only the internal memory, it is possible to control a pneumatic system that has a sequence with48 steps if all the resources for
54、all steps are used, but it is possible to reach sixty steps in the case of a simpler system.the programming of the controller does not use plc languages, but a configuration that is simple and intuitive. with electro-pneumatic system, the programming follows the same technique that was used before t
55、o design the system, but here the designer work s directly with the states or steps of the system.with a very simple machine language the designer can define all the configuration of the step using four or five bytes. it depends only on his experience to use all the resources of the controller.the c
56、ontroller task is not to work in the same way as a commercial plc but the purpose of it is to be an example of a versatile controller that is designed for a specific area. because of that, it is not possible to say which one works better; the system made with microcontroller is an alternative that w
57、orks in a simple way.附录2应用于电气系统的可编程序控制器摘要此项目主要是研究电气系统以及简单有效的控制气流发动机的程序和气流系统的状态。它的实践基础包括基于气流的专有控制器、自动化设计、气流系统的控制程序和基于微控制器的电子设计。1.简介使用电气技术的自动化系统主要由三个组成部分:发动机或马达,感应器或按钮,状如花瓣的控制零部件。现在,大部分的系统逻辑操作的控制器都被程序逻辑控制器(plc)所取代。plc的感应器和开关是输入端,而发动机的直接控制阀是输出端,其中有一个内部程序操控所有运行必需的逻辑,模拟其他的装置如计算器、定时器等,对整个系统的运行状态进行控制。因为可以根
58、据需要无数次创建和模拟这样的系统,所以藉由plc的使用,此项目有灵活的优点。因此,可以节省时间,减少失误的危险,同时在使用相同材料的情况下,它可以更加精密。市场上的许多家公司都使用了常规的plc,它不仅可以用气流系统来控制,还可以用各种电气设备。plc 的用途广泛,可以应用于许多工业生产中,甚至用于建筑物的安全和自动化系统中。由于以上的各种特性,在一些实际应用中plc提供了很多的资源,甚至包括不控制系统的资源,电气系统就是一种这样的应用。对于自动化的工程,plc的使用是比较昂贵的,尤其是对那些小型的系统。针对这种情况可行的一种办法是创建一个可提供特定尺寸和功能的控制器3,4。这种控制器可以根据
59、微控制器来制作。这种基于微控制器的控制器的适用范围比较小,只能用于一个类型的机器或者可以用做一个像普通plc一样可以被编程的控制器,那样它就可以通过可变化的逻辑程序来进行各种作业。所有的这些特性根据具体需要的不同而不同,具体的设计者的经验的不同而不同。但是这种设计的主要优点在于设计人员非常了解自己的控制器,可以自由掌握控制器的大小尺寸,改变它的功能。这就意味着此项目有更多的独特性,但同时系统的控制也由它的设计者所控制。2.电气系统人们可以从一个自动化系统中找到三个上文中提到的基本部件,外加一个控制系统的逻辑线路。只有成熟先进的技术能做出特定的逻辑线路和执行正确操作所需要的部件升级。对于一个简单的运动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度婴幼儿保育员职业资格认证聘用合同
- 2025年度茶叶出口退税代理服务合同-@-3
- 2025年度防盗门安装工程安全生产责任合同
- 2025年度农村土地征收补偿安置协议
- 2025年度董事任期考核及聘任合同
- 2025年陈设艺术陶瓷制品项目发展计划
- 动手实践小班农业劳动体验计划
- 秋季学校社团活动规划计划
- 促进幼儿积极参与的活动设计计划
- 建立职业目标与价值观的统计划
- 重大事故隐患排查治理
- 部编版语文一年级下册第一单元教材解读
- 护士临床护理组长
- 2025保安部年度工作计划
- 土建、装饰、维修改造等零星工程施工组织设计技术标
- 宠物猫护理教学
- 高速公路养护作业安全培训内容
- 2024年江苏经贸职业技术学院单招职业适应性测试题库
- 《大白菜种植栽培技》课件
- 北京工业大学《数据挖掘》2023-2024学年第一学期期末试卷
- 图书借阅登记表
评论
0/150
提交评论