0611河南省中考数学真题分类_第1页
0611河南省中考数学真题分类_第2页
0611河南省中考数学真题分类_第3页
0611河南省中考数学真题分类_第4页
0611河南省中考数学真题分类_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、数与代数21数与式2(1)有理数2(2)实数3(3)代数式4(4)整式与分式42方程与不等式5(1)方程与方程组5(2)不等式与不等式组63函数8(1)探索具体问题中的数量关系和变化规律8(2)函数8(3)一次函数9(4)反比例函数10(5)二次函数11二、空间与图形141图形的认识14(1)点、线、面14(2)角15(3)相交线与平行线15(1)求点d沿三条圆弧运动到g所经过的路线长;16(4)三角形17(5)四边形21(6)圆24(7)尺规作图27(8)视图与投影。272图形与变换29(1)图形的轴对称29(2)图形的平移31(3)图形的旋转31(4)图形的相似333图形与坐标364图

2、形与证明37(1)了解证明的含义37(2)掌握以下基本事实,作为证明的依据37(3)利用(2)中的基本事实证明下列命题【1】37(4)通过对欧几里得原本的介绍,感受几何的演绎体系对数学发展和人类文明的价值38三、统计与概率381统计382概率40四、探索题44一、数与代数1数与式(1)有理数理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。7. (2008河南)比 -3 小 2 的数是 。借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)。1. (2011河南)5的绝对值 【 】(a)5 (b)5 (c) (d)1、(2010河南)-的相反数是(

3、)a、b、 c、2d、21、(2009河南)-5的相反数是 ()a、 b、 c、-5 d、51. (2008河南)的绝对值是 【 】a. b. c.7 d.-7 7(2007河南)的相反数是 1、(2006河南)13的倒数是()a、3b、13c、13d、3理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主)。7、(2010河南)计算|1|+(2)2= 理解有理数的运算律,并能运用运算律简化运算。能运用有理数的运算解决简单的问题。能对含有较大数字的信息作出合理的解释和推断。(2)实数了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。7、(2006河南

4、)函数y=x2中自变量x的取值范围是()a、x2b、x2c、x2d、x2了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根。7. (2011河南)27的立方根是 。7、(2009河南)16的平方根是 。了解无理数和实数的概念,知道实数与数轴上的点一一对应。8、(2010河南)若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是 12(2007河南)已知x为整数,且满足,则x 能用有理数估计一个无理数的大致范围。了解近似数与有效数字的概念;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。了解二次根式的概

5、念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化)。(3)代数式在现实情境中进一步理解用字母表示数的意义。能分析简单问题的数量关系,并用代数式表示。9、(2006河南)在“手拉手活动”中,小明为捐助某贫困山区的一名同学,现已存款300元,他计划今后每月存款10元,n月后存款总数是 元能解释一些简单代数式的实际背景或几何意义。会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。9、(2009河南)下图是一个简单的运算程序若输入x的值为2,则输出的数值为 (4)整式与分式了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在

6、计算器上表示)。2、(2010河南)我省200年全年生产总值比2008年增长10.7%,达到约19367亿元19367亿元用科学记数法表示为()a、1.93671011元b、1.93671012元 c、1.93671013元d、1.93671014元2. (2008河南)为支援四川地震灾区,中央电视台于5月18日晚举办了爱的奉献赈灾晚会,晚会现场捐款达1 514 000 000元。1 514 000 000用科学计数法表示正确的是 【 】a. b. c. d. 1(2007河南)计算 的结果是 【 】 a1 b 1 c3 d 3 2、(2006河南)2005年末,我国外汇储备达到8 189亿美

7、元,用科学记数法表示(保留3个有效数字)是()a、8.191011b、8.181011c、8.191012d、8.181012了解整式的概念,会进行简单的整式加、减运算;会进行简单的整式乘法运算(其中的多项式相乘仅指一次式相乘)3. (2011河南 有理数、实数、整式运算)下列各式计算正确的是 【 】(a) (b)(c) (d)8(2007河南)计算: .会推导乘法公式:(ab)(ab)=a2b2;(ab)2=a22abb2,了解公式的几何背景,并能进行简单计算。会用提公因式法、公式法(直接用公式不超过二次)进行因式分解(指数是正整数)。了解分式的概念,会利用分式的基本性质进行约分和通分,会进

8、行简单的分式加、减、乘、除运算。16. (8分)(2011河南)先化简,然后从2x2的范围内选取一个合适的整数作为x的值代入求值.16、(2010河南)已知。将它们组合成(ab)c或abc的形式,请你从中任选一种进行计算,先化简,再求值其中x=316、(2009河南)先化简,然后从中选取一个你认为合适的数作为x的值代入求值16.(8分) (2008河南)先化简,再求值:,其中。2(2008河南)使分式 有意义的x的取值范围为 【 】 a b c c16、(2006河南)计算:2方程与不等式(1)方程与方程组能够根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。20

9、、(2010河南 方程、不等式组)为鼓励学生参加体育锻炼,学校计划拿出不超过1600元的资金再购买一批篮球和排球,已知篮球和排球的单价比为3:2单价和为80元(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量多于25个,有哪几种购买方案?经历用观察、画图或计算器等手段估计方程解的过程。会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)21. (10分)(2011河南 一元一次方程组)某旅行杜拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0m100100200收费标准(元/人)90

10、8575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人经核算,若两校分别组团共需花费10 800元,若两校联合组团只需花赞18 000元.(1)两所学校报名参加旅游的学生人数之和赳过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?16(8分)(2007河南 分式方程) 理解配方法,会用因式分解法、公式法、配方法解简单的数字系数的一元二次方程。5、(2010河南)一元二次方程x23=0的根为()a、x=3b、x=c、x1=,x2=- d、x1=3,x2=34、(2009河南)方程x2=x的解是()a、x=

11、1 b、x=0 c、x1=1,x2=0d、x1=1,x2=0能根据具体问题的实际意义,检验结果是否合理。(2)不等式与不等式组能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。会解简单的一元一次不等式,并能在数轴上表示出解集。会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。4.(2011河南)不等式的解集在数轴上表示正确的是 【 】2、(2009河南)不等式2x4的解集是()a、x2b、x2 c、x2d、x23. (2008河南)不等式的解集在数轴上表示正确的是 【 】 4、(2006河南)如图,一次函数y=kx+b的图象经过a、b两点,则kx+b0解集是()a

12、、x0b、x3c、x2d、3x2能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。22、(2009河南)某家电商场计划用32 400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台三种家电的进价和售价如表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?22.(10分)(2008河南 方程组与不等式组)某校八年级举行英语演讲比赛,派

13、了两位老师去学校附近的超市购买笔记本作为奖品。经过了解得知,该超市的a、b两种笔记本的价格分别为12 元和8 元,他们准备购买这两种笔记本共30本。(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的a种笔记本的数量要少于b种笔记本数量的,但又不少于b中笔记本数量的,如果设他们买a种笔记本n本,买这两种笔记本共花费w元。请写出w(元)关于n (本)的函数关系式,并求出自变量n的取值范围;请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?22(10分)(2007河南 方程组与不等式组)某商场用36万元购进a、

14、b两种商品,销售完后共获利6万元,其进价和售价如下表:ab进价(元/件)12001000售价(元/件)13801200(注:获利售价进价)(1) 该商场购进a、b两种商品各多少件?(2) 商场第二次以原进价购进a、b两种商品购进b种商品的件数不变,而购进a种商品的件数是第一次的2倍,a种商品按原价出售,而b种商品打折销售若两种商品销售完毕,要使第二次经营活动获利不少于81600元,b种商品最低售价为每件多少元?3函数(1)探索具体问题中的数量关系和变化规律(2)函数通过简单实例,了解常量、变量的意义。能结合实例,了解函数的概念和三种表示方法,能举出函数的实例。9(2007河南)写出一个经过点(

15、1,1)的函数的表达式 能结合图像对简单实际问题中的函数关系进行分析。能确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求出函数值。能用适当的函数表示法刻画某些实际问题中变量之间的关系。结合对函数关系的分析,尝试对变量的变化规律进行初步预测。(3)一次函数结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。9、(2010河南)写出一个y随x增大而增大的一次函数的解析式: 会画一次函数的图象,根据一次函数的图象和解析表达式y=kx+b(k0)探索并理解其性质(k0或k0时,图象的变化情况)理解正比例函数。8. (2008河南)图象经过点( 1 , 2 )的正比例函数的

16、表达式为 。能根据一次函数的图象求二元一次方程组的近似解。能用一次函数解决实际问题。19、(2009河南)暑假期间,小明和父母一起开车到距家200千米的景点旅游出发前,汽车油箱内储油45升;当行驶150千米时,发现油箱剩余油量为30升(1)已知油箱内余油量y(升)是行驶路程x(千米)的一次函数,求y与x的函数关系式;(2)当油箱中余油量少于3升时,汽车将自动报警如果往返途中不加油,他们能否在汽车报警前回到家?请说明理由13. (2008河南)某商店一套夏装的进价为200元,按标价的80%销售可获利72元,则该服装的标价为 元。21、(2006河南)甲、乙两家超市以相同的价格出售同样的商品,为了

17、吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠设顾客预计累计购物x元(x300)(1)请用含x代数式分别表示顾客在两家超市购物所付的费用;(2)试比较顾客到哪家超市购物更优惠?说明你的理由(4)反比例函数结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式。21、(2010河南 一次函数、反比例函数、利用图像解不等式)如图,直线y=k1x+b与反比例函数的图象交于a(1,6),b(a,3)两点(1)求k1、k2的值(2)直接写出时x的取值范围;(3)如图,等腰梯形o

18、bcd中,bcod,ob=cd,od边在x轴上,过点c作ceod于点e,ce和反比例函数的图象交于点p,当梯形obcd的面积为12时,请判断pc和pe的大小关系,并说明理由11.(2008河南) 已知反比例函数的图象经过点( m,2)和(-2,3),则m的值为 。能画出反比例函数的图象,根据图象和解析表达式y=kx(k0)探索并理解其性质(k0或k0时,图象的变化)。9. (2011河南 对称、反比例函数)已知点在反比例函数的图象上,若点p关于y轴对称的点在反比例函数的图象上,则k的值为 .20. (9分)(2011河南 一次函数、反比例函数、利用图像解不等式、求点的坐标)如图,一次函数与反比

19、例函数的图象交于点和,与y轴交于点c.(1)= ,= ;(2)根据函数图象可知,当时,x的取值范围是 ;(3)过点a作adx轴于点d,点p是反比例函数在第一象限的图象上一点.设直线op与线段ad交于点e,当:=3:1时,求点p的坐标.12、(2009河南)点a(2,1)在反比例函数y=kx的图象上,当1x4时,y的取值范围是 8、(2006河南)写出具有“图象的两个分支分别位于第二、四象限内”的反比例函数: (写出一个即可)能用反比例函数解决某些实际问题。(5)二次函数通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。会用描点法画出二次函数的图象,能从图象上认识二次函数的性质

20、。11.(2011河南 二次函数的单调性)点、是二次函数的图象上两点,则与的大小关系为 (填“”、“”、“”).6(2008河南)二次函数 的图像可能是 【 】a.xyb.xyc.xyd.xy会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题。12、(2006河南)已知二次函数y=x2+2x+c2的对称轴和x轴相交于点(m,0),则m的值为 23. (11分)(2011河南 二次函数解析式、最值点、全等、相似)如图,在平面直角坐标系中,直线与抛物线交于a、b两点,点a在x轴上,点b的横坐标为8.(1)求该抛物线的解析式; (2)点p是直线ab上方的抛物线

21、上一动点(不与点a、b重合),过点p作x轴的垂线,垂足为c,交直线ab于点d,作peab于点e.设pde的周长为l,点p的横坐标为x,求l关于x的函数关系式,并求出l的最大值;连接pa,以pa为边作图示一侧的正方形apfg.随着点p的运动,正方形的大小、位置也随之改变.当顶点f或g恰好落在y轴上时,直接写出对应的点p的坐标.23、(2010河南 二次函数解析式、最值、平行四边形判定)在平面直角坐标系中,已知抛物线经过a(4,0),b(0,4),c(2,0)三点(1)求抛物线的解析式;(2)若点m为第三象限内抛物线上一动点,点m的横坐标为m,amb的面积为s、求s关于m的函数关系式,并求出s的最

22、大值(3)若点p是抛物线上的动点,点q是直线y=x上的动点,判断有几个位置能够使得点p、q、b、o为顶点的四边形为平行四边形,直接写出相应的点q的坐标23、(2009河南 二次函数解析式、最值、等腰三角形)如图,在平面直角坐标系中,已知矩形abcd的三个顶点b(4,0)、c(8,0)、d(8,8)抛物线y=ax2+bx过a、c两点(1)直接写出点a的坐标,并求出抛物线的解析式;(2)动点p从点a出发沿线段ab向终点b运动,同时点q从点c出发,沿线段cd向终点d运动速度均为每秒1个单位长度,运动时间为t秒过点p作peab交ac于点e过点e作efad于点f,交抛物线于点g当t为何值时,线段eg最长

23、?连接eq在点p、q运动的过程中,判断有几个时刻使得ceq是等腰三角形?请直接写出相应的t值23(11分)(2009河南 二次函数解析式、菱形)如图,对称轴为直线x的抛物线经过点a(6,0)和b(0,4)(1)求抛物线解析式及顶点坐标;(2)设点e(x,y)是抛物线上一动点,且位于第四象限,四边形oeaf是以oa为对角线的平行四边形,求四边形oeaf的面积s与x之间的函数关系式,并写出自变量x的取值范围;(3)当四边形oeaf的面积为24时,请判断oeaf是否为菱形?是否存在点e,使四边形oeaf为正方形?若存在,求出点e的坐标;若不存在,请说明理由会利用二次函数的图象求一元二次方程的近似解。

24、二、空间与图形1图形的认识(1)点、线、面通过丰富的实例,进一步认识点、线、面(如交通图上用点表示城市,屏幕上的画面是由点组成的)。20、(2006河南)如图,线段ab=4,点o是线段ab上的点,点c、d是线段oa、ob的中点,小明很轻松地求得cd=2他在反思过程中突发奇想:若点o运动到线段ab的延长线上或直线ab外,原有的结论“cd=2”是仍然成立呢?请帮小明画出图形分析,并说明理由(2)角通过丰富的实例,进一步认识角。会比较角的大小,能估计一个角的大小,会计算角度的和与差,认识度、分、秒,会进行简单换算。了解角平分线及其性质【1】注【1】角平分线上的点到角的两边距离相等,角的内部到两边距离

25、相等的点在角的平分线上。(第15题图)15如图,点p是aob的角平分线上一点,过p作pc/oa交ob于点c若aob60,oc=4,则点p到oa的距离pd等于 (3)相交线与平行线 了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。2. (2011河南)如图,直线a,b被c所截,ab,若1=35,则2的大小为 【 】(a)35 (b)145 (c)55 (d)12510、(2010河南)将一副直角三角板如图放置,使含30角的三角板的段直角边和含45角的三角板的一条直角边重合,则1的度数为 度8、(2009河南 角平分线、平行线)如图,abcd,ce平分acd,若1=25,那

26、么2的度数是 度9. (2008河南)如图,直线 ,那么的度数是 。了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义。13.(2011河南 全等三角形、垂线段最短)如图,在四边形abcd中,a=90,ad=4,连接bd,bdcd,adb=c.若p是bc边上一动点,则dp长的最小值为 。20(9分)(2007河南 正方形性质、垂直定义)如图,abcd是边长为1的正方形,其中、的圆心依次是点a、b、c(1)求点d沿三条圆弧运动到g所经过的路线长;(2)判断直线gb与df的位置关系,并说明理由知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。了解

27、线段垂直平分线及其性质【1】知道两直线平行同位角相等,进一步探索平行线的性质。知道过直线外一点有且仅有一条直线平行于已知直线,会用三角尺和直尺过已知直线外一点画这条直线的平行线。体会两条平行线之间距离的意义,会度量两条平行线之间的距离。(4)三角形了解三角形有关概念(内角、外角、中线、高、角平分线),会画出任意三角形的角平分线、中线和高,了解三角形的稳定性。8. (2011河南 角平分线的性质、三角形内角和、等腰三角形性质)如图,在abc中,ab=ac,cd平分acb,a=36,则bdc的度数为 . 探索并掌握三角形中位线的性质。10、(2009河南)如图,在平行四边形abcd中,ac与bd交

28、于点o,点e是bc边的中点,oe=1,则ab的长是 了解全等三角形的概念,探索并掌握两个三角形全等的条件。17. (9分)(2011河南)如图,在梯形abcd中,adbc,延长cb到点e,使be=ad,连接de交ab于点m.(1)求证:amdbme;(2)若n是cd的中点,且mn=5,be=2,求bc的长.17、(2010河南 等腰三角形性质 全等)如图,四边形abcd是平行四边形,abc和abc关于ac所在的直线对称,ad和bc相交于点o,连接bb(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:abocdo18.(9分)(2008河南)复习“全等三角形”的知识是,老师布置了一

29、道作业题:“如图(1),已知,在abc中,ab=ac,p是abc内任意一点,将ap绕点a顺时针旋转至aq,使,连接bq、cp,则bq=cp。”小亮是一个爱动脑筋的同学,他通过对图(1)的分析,证明了abqacp,从而证得。之后,他将点p移到等腰三角形abc之外,原题中其它条件不变,发现“bq=cp”仍然成立,请你就图(2)给出证明。17(9分)(2007河南)如图,点e、f、g分别 是abcd的边ab、bc、cd、da的中点求证:befdgh了解等腰三角形的有关概念,探索并掌握等腰三角形的性质【2】和一个三角形是等腰三角形的条件 【3】;了解等边三角形的概念并探索其性质。17、(2006河南)

30、如图,梯形abcd中,adbc,ab=ad=dc,点e为底边bc的中点,且deab试判断ade的形状,并给出证明23、(2006河南 一次函数、圆与直线位置关系、等腰三角形判定)如图,在平面直角坐标系中,直线分别交x轴、y轴于a、b两点(1)求两点的坐标;(2)设p是直线ab上一动点(点p与点a不重合),设p始终和x轴相切,和直线ab相交于c、d两点(点c的横坐标小于点d的横坐标)设p点的横坐标为m,试用含有m的代数式表示点c的横坐标;(3)在(2)的条件下,若点c在线段ab上,求m为何值时,boc为等腰三角形?了解直角三角形的概念,探索并掌握直角三角形的性质 【4】和一个三角形是直角三角形的

31、条件 【5】22、(2010河南 勾股定理 全等)(1)操作发现:如图,矩形abcd中,e是ad的中点,将abe沿be折叠后得到gbe,且点g在矩形abcd内部小明将bg延长交dc于点f,认为gf=df,你同意吗?说明理由(2)问题解决:保持(1)中的条件不变,若dc=2df,求的值;(3)类比探求:保持(1)中条件不变,若dc=ndf,求的值14、(2009河南)动手操作:在矩形纸片abcd中,ab=3,ad=5如图所示,折叠纸片,使点a落在bc边上的a处,折痕为pq,当点a在bc边上移动时,折痕的端点p、q也随之移动若限定点p、q分别在ab、ad边上移动,则点a在bc边上可移动的最大距离为

32、 23.(12分)(2008河南 等腰三角形与直角三角形的条件及性质、二次函数的值 )如图,直线和x轴、y轴的交点分别为b、c,点a的坐标是( - 2,0 ).(1)试说明abc是等腰三角形;(2)动点m从点a出发沿x轴向点b运动,同时动点n从b出发沿线段bc向点c 运动,运动的速度均为每秒1个单位长度。当其中的一个动点到达终点时,它们都停止运动。设点m运动t秒时,mon的面积为s.求s与t的函数关系式;当点m在线段ob上运动是,是否存在s=4的情形?若存在,求出对应的t值;若不存在,说明理由;在运动过程中,当mon为直角三角形时,求t的值。体验勾股定理的探索过程,会运用勾股定理解决简单问题;

33、会用勾股定理的逆定理判定直角三角形。(5)四边形探索并了解多边形的内角和与外角和公式,了解正多边形的概念。掌握平行四边形、矩形、菱形、正方形、梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性。探索并掌握平行四边形的有关性质【1】和四边形是平行四边形的条件【2】(【注解】 【1】 平行四边形的对边相等、对角相等、对角线互相平分【2】 一组对边平行且相等,或两组对边分别相等,或对角线互相平分的四边形是平行四边形。) 探索并掌握矩形、菱形、正方形的有关性质【3】和四边形是矩形、菱形、正方形的条件【4】22、(2006河南 平行线、菱形判定)如图abc中,acb=90度,ac=2,bc=3d

34、是bc边上一点,直线debc于d,交ab于点e,cfab交直线de于f设cd=x(1)当x取何值时,四边形eacf是菱形?请说明理由;(2)当x取何值时,四边形eacd的面积等于2?(【注解】 【3】 矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直平分。 【4】 三个角是直角的四边形,或对角线相等的平行四边形是矩形;四边相等的四边形或对角线互相垂直的平行四边形是菱形。)22. (10分)(2011河南 平行四边形、菱形、三角形性质及判定)如图,在rtabc中,b=90,bc=5,c=30.点d从点c出发沿ca方向以每秒2个单位长的速度向点a匀速运动,同时点e从点a出发沿ab

35、方向以每秒1个单位长的速度向点b匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点d、e运动的时间是t秒(t0).过点d作dfbc于点f,连接de、ef.(1)求证:ae=df;(2)四边形aefd能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,def为直角三角形?请说明理由.探索并了解等腰梯形的有关性质【5】和四边形是等腰梯形的条件【6】(【注解】 【5】 等腰梯形同一底上的两底角相等,两条对角线相等。【6】 同一底上的两底角相等的梯形是等腰梯形。)19、(2010河南 直角梯形、平行四边形、菱形)如图,在梯形abcd中,adbc,e是bc的中点,

36、ad=5,bc=12,cd=,c=45,点p是bc边上一动点,设pb的长为x(1)当x的值为 时,以点p、a、d、e为顶点的四边形为直角梯形;(2)当x的值为 时,以点p、a、d、e为顶点的四边形为平行四边形;(3)点p在bc边上运动的过程中,以p、a、d、e为顶点的四边形能否构成菱形?试说明理由21、(2009河南 等腰梯形、直角梯形、菱形)如图,在rtabc中,acb=90,b=60,bc=2点o是ac的中点,过点o的直线l从与ac重合的位置开始,绕点o作逆时针旋转,交ab边于点d,过点c作ceab交直线l于点e,设直线l的旋转角为(1)当= 度时,四边形edbc是等腰梯形,此时ad的长为

37、 ;当= 度时,四边形edbc是直角梯形,此时ad的长为 ;(2)当=90时,判断四边形edbc是否为菱形,并说明理由11(2007河南)如图,在直角梯形abcd中,ab/cd,adcd,ab=1cm,ad=2cm,cd=4cm,则bc= (第11题图)探索并了解线段、矩形、平行四边形、三角形的重心及物理意义(如一根均匀木棒、一块均匀的短形木板的重心)。通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计。15.(2011河南 梯形、等边三角形、相似)如图,在直角梯形abcd中,adbc,abc=90,c=60,bc=2ad=2,点e是

38、bc边的中点,def是等边三角形,df交ab于点g,则bfg的周长为 .(6)圆 理解圆及其有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆以及圆与圆的位置关系。 探索圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征。10、(2006河南)如图,点a、b、c是o上的三点,若boc=56,则a= 度了解三角形的内心和外心。 了解切线的概念,探索切线与过切点的半径之间的关系;能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。 15、(2010河南 直线与圆的位置关系)如图,rtabc中,c=90,abc=30,ab=6点d在ab边上,点e是bc边上一点(不与点b、c重合)

39、,且da=de,则ad的取值范围是 会计算弧长及扇形的面积,会计算圆锥的侧面积和全面积。14、(2010河南)如图矩形abcd中,ab=1,ad=,以ad的长为半径的a交bc于点e,则图中阴影部分的面积为 14. (2008河南)如图,小刚制作了一个高12 cm, 底面直径为10 cm的圆锥,这个圆锥的侧面积是 cm2。14(2007河南 菱形及等边性质、扇形面积公式)将图,四边形oabc为菱形,点b、c在以点o为圆心的上,若oa=3,1=2,则扇形oef的面积为 (第14题图)综合10.(2011河南 切线性质、同弧所对圆周角) 如图,cb切o于点b,ca交o于点d且ab为o的直径,点e是弧

40、abd上异于点a、d的一点.若c=40,则e的度数为 . 11、(2010河南 切线、同弧所对圆周角与圆心角的关系)如图,ab切o于点a,bo交o于点c,点d是cma上异于点c、a的一点,若abo=32,则adc的度数是 度11、(2009河南 切线、同弧所对圆周角)如图,ab为半圆o的直径,延长ab到点p,使bp=12ab,pc切半圆o于点c,点d是ac上和点c不重合的一点,则d的度数为 度12. (2008河南 切线)如同所示,边长为1的小正方形构成的网格中,半径为1的o的圆心o在格点上,则的正切值等于 。10(2007河南 切线、同弧所对圆周角)如图,pa、pb切o于点a、b,点c是o上

41、一点,且acb=65,则p=度 (第10题图)(7)尺规作图 完成以下基本作图:作一条线段等于已知线段,作一个角等于已知角,作角的平分线,作线段的垂直平分线。 利用基本作图作三角形:已知三边作三角形;已知两边及其夹角作三角形;已知两角及其夹边作三角形;已知底边及底边上的高作等腰三角形。 探索如何过一点、两点和不在同一直线上的三点作圆。 了解尺规作图的步骤,对于尺规作图题,会写已知、求作和作法(不要求证明)。 (8)视图与投影。会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型。 14(2011河南)如图是一个

42、几何体的三视图,根据图示的数据可计算出该几何体的表面积为 .13、(2010河南)如图是由大小相同的小正方体组成的简单几何体的主视图和左视图那么组成这个几何体的小正方体的个数最多为 6、(2009河南)一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为()a、3 b、4 c、5 d、64. (2008河南)如图(1)是一些大小相同的小正方体组成的几何体,其中主视图如图(2)所示,则其俯视图是 【 】 5(2007河南)由一些大小相同的小正方体组成的几何体的俯视图如图所示,其中正方形中的数字表示在该位置上的小正方体的个数,那么,这个几何体的

43、左视图是 【 】(第5题图)a b c d 5、(2006河南)由一些大小相同的小正方形组成的几何体三视图如图所示,那么,组成这个几何体的小正方体有()a、6块b、5块c、4块d、3块了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型。 了解基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)。 观察与现实生活有关的图片(如照片、简单的模型图、平面图、地图等),了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。 通过背景丰富的实例,知道物体的阴影是怎么形成的,并能根据光线的方向辨认实物的阴影(如在阳光或灯光下,观察手的阴影或

44、人的身影)。 了解视点、视角及盲区的涵义,并能在简单的平面图和立体图中表示。 通过实例了解中心投影和平行投影。 2图形与变换 (1)图形的轴对称 通过具体实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。 17、(2009河南)如图所示,bac=abd,ac=bd,点o是ad、bc的交点,点e是ab的中点试判断oe和ab的位置关系,并给出证明(第3题)3(2007河南)如图,abc与abc关于直线l对称,则b的度数为 【 】a30 b50 c90 d10014、(2006河南)如图,在abc中,ac=bc=2,acb=90,d是bc边的中点,e是ab边上一动点,则e

45、c+ed的最小值是 能够按要求作出简单平面图形经过一次或两次轴对称后的图形;探索简单图形之间的轴对称关系,并能指出对称轴。 探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质。 5. (2008河南)如图,阴影部分组成的图案既是关于x轴成对称的图形,又是关于坐标原点o成中心对称的图形。若a的坐标是( 1 , 3 ),则点m和点n的坐标分别为 【 】 a. m ( 1 , 3 ) , n ( -1 , -3 ) b. m (-1 ,-3 ) , n ( -1 , 3 )c. m ( -1 ,-3 ), n ( 1 ,-3 ) d. m ( -1 , 3 ) ,

46、n ( 1 , -3 ) 欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物体的镜面对称,能利用轴对称进行图案设计。 6. (2008河南)如图所示,有一张一个角为的直角三角形纸片,沿其中一条中位线剪开后,不能拼成的四边形是 【 】a.邻边不等的矩形 b.等腰梯形 c.有一角是锐角的菱形 d.正方形(2)图形的平移 通过具体实例认识平移,探索它的基本性质,理解对应点连线平行且相等的性质。能按要求作出简单平面图形平移后的图形。 利用平移进行图案设计,认识和欣赏平移在现实生活中的应用。 (3)图形的旋转 通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋

47、转中心连线所成的角彼此相等的性质。6. (2011河南 图形旋转、平移与坐标)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点o旋转180到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点a在丙位置中的对应点a的坐标为 【 】(a)(3,1) (b)(1,3)(c)(3,1) (d)(1,1) 6、(2010河南 图形旋转)如图,将abc绕点c(0,1)旋转180得到abc,设点a的坐标为(a,b),则点a的坐标为()a、(a,b) b、(a,b1)c、(a,b+1)d、(a,b2)5、(2009河南)如图所示,在平面直角坐标系中,点a、b的坐标分别为(2,0)和(2

48、,0)月牙绕点b顺时针旋转90得到月牙,则点a的对应点a的坐标为()a、(2,2) b、(2,4) c、(4,2) d、(1,2)6、(2006河南)如图,一块含有30角的直角三角板abc,在水平桌面上绕点c接顺时针方向旋转到abc的位置若bc=15cm,那么顶点a从开始到结束所经过的路径长为()a、10cmb、30cmc、15cmd、20cm15、(2006河南)如图,把一个矩形纸片oabc放入平面直角坐标系中,使oa、oc分别落在x轴、y轴上,连接ob,将纸片oabc沿ob折叠,使点a落在a的位置上若ob=5,bcoc=12,求点a的坐标为 了解平行四边形、圆是中心对称图形。 15、(20

49、09河南)如图,在半径为5,圆心角等于45的扇形aob内部作一个正方形cdef,使点c在oa上,点d、e在ob上,点f在ab上,则阴影部分的面积为(结果保留) 能够按要求作出简单平面图形旋转后的图形。 欣赏旋转在现实生活中的应用。 探索图形之间的变换关系(轴对称、平移、旋转及其组合)。灵活运用轴对称、平移和旋转的组合进行图案设计。 (4)图形的相似 了解比例的基本性质,了解线段的比、成比例线段,通过建筑、艺术上的实例了解黄金分割。 通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。 15.(2008河南)如图,在矩形abcd中,e、f分别是边ad、bc的中点,点g、h在dc边上,且.若ab=10,bc=12,则图中阴影部分的面积为 。了解两个三角形相似的概念,探索两个三角形相似的条件。4、(2010河南 相似的判定、性质)如图,abc中,点d、e分别是ab、ac的中点,则下列结论:bc=2de;adeabc;adae=abac其中正确的有()a、3个b、2个 c、1个d、0个 了解图形的位似,能够利用位似将一个图形放大或缩小。 通过典型实例观察和认识现实生活中物体的相似,利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论