地震载荷下的混凝土重力坝断裂原因分析毕业设计外文翻译_第1页
地震载荷下的混凝土重力坝断裂原因分析毕业设计外文翻译_第2页
地震载荷下的混凝土重力坝断裂原因分析毕业设计外文翻译_第3页
地震载荷下的混凝土重力坝断裂原因分析毕业设计外文翻译_第4页
地震载荷下的混凝土重力坝断裂原因分析毕业设计外文翻译_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 毕业设计(论文)外文翻译 题 目 榆林王圪堵水库枢纽 布置及重力坝设计 专 业 水利水电工程 班 级 学 生 指导教师 地震载荷下的混凝土重力坝断裂原因分析 abbas mansouri;mir ahmad lashteh neshaei;reza aghajany 1伊斯兰阿扎德大学,土木工程,伊朗德黑兰 2桂兰大学,土木工程,拉什特,土木工程伊朗 3伊斯兰阿扎德大学,土木工程,德黑兰(北支),伊朗 摘要:在本文中,对混凝土重力坝的地震裂缝采用有限元(2d)的行为理论进行了研究。巴占特模型(它是非线性的断裂力学标准作为衡量的增长和弥散裂缝)被选中来开发裂缝的剖面图。混凝土的应力-应变曲线作

2、为简化的两线,欧拉-拉格朗日公式被选用于大坝和水库系统。根据1967年的地震记录,用上述模型对koyna混凝土重力坝进行了研究。结果证实了第一个裂缝的图像有增长和扩张而第二个并没有受到它的影响。比较的结果显示了与其他研究者一致的结论。关键词:地震断裂;弥散裂缝;非线性断裂力学;混凝土重力坝。 在过去的十年里,有关在地震时混凝土大坝安全的的大坝抗震性能已受到广泛的研究。chopra 等人(1972),通过使用线性弹性分析研究大坝的抗震性能的裂纹路径。分析显示,在损坏或有风险的地方会影响结构的稳定性。pal(1976)是第一个利用非线性分析研究koyna大坝的研究人员。在本研究中,假设没有水库的影

3、响,在刚性地基上,用弥散裂纹模型对koyna 大坝裂纹扩张和强度标准裂纹增长进行了分析。结果表明,裂纹的增长对材料性质以及元素大小是非常敏感的。图1(a)显示了这种分析造成的大坝裂纹区。skrikerud(1986)采用离散裂缝裂纹扩展和裂纹增长的标准,通过koyna大坝的个案研究了混凝土坝。在他们的研究中,裂纹在每一步的成长,长裂纹尖端的元素最终被认为是有效的。他把他们的模型试验结果归结于裂纹分析在与大坝开裂的膨胀系数不匹配、和水库相互作用并且缺乏大坝特性参数的实际值等原因。通过分析留在图1(b)中的裂纹就可以证实。el-aidi和hall(1989)研究了松平坝的地震裂缝,就用到了弥散裂缝

4、的裂纹扩展和增长模型和强度准则。他们的研究认为裂纹轮廓线的出现证明了水库-坝和地基-大坝的相互作用。大坝裂缝如图1(c)所示。fenves和vargas-loli还用断裂力学裂纹增长和弥散裂缝模型裂纹扩展( uang and bertero,1990)的标准研究了松平大坝。不计由地基带来的结果,他们应用不同系数的塔夫脱的地震记录;对松平坝在有没有水库影响的两种情况下进行分析,本课题研究了大坝动水压力与裂纹分布对大坝的抗震性能的影响,此研究结果示于图1(d)。 在该文章中,对混凝土重力坝地震条件下非线性断裂行为的研究有以下部分: 第一,提交弥散裂纹模型与动态荷载作用下混凝土的性能和断裂的堤坝研究

5、; 第二,对koyna混凝土重力坝从非线性分析方面进行了抗震性能的评估。 采用有限元方法分析坝-库水相互作用和无水库作用的结果。从而可以得出结论,上游和下游都出现通过大坝上部的的预裂缝,这是符合观察原型特征的结论。比较分析表明,水库的作用不能忽视。 (d) vargas-loli (c) el-aidi (b) skrikerud (a) pal (h) 实验模型 (g) 实物模型 (f) bhattacharjee (e) calayir and and leger karaton 图1:关于重力坝开裂的过去调查资料。 欧拉-拉格朗日制定的动态相互作用的坝-水库系统和边界条件:使用不同的方法

6、,为大坝和水库建模,而欧拉-拉格朗日模型是使用的一个标准。在这个研究中,大坝和水库建模系统的欧拉-拉格朗日关系被进行了调查研究。 在图 2 中,给出了大坝和水库的边界条件。 根据有限元理论方程,调整的大坝如下公式: 在这个公式中:质量矩阵,阻尼矩阵,结构刚度矩阵,相对节点的位移矢量,单位矩阵,锚点加速度矢量。 在众所周知的亥姆霍兹方程的两个关系是关于液体环境中分配动水压力的情况下,提出了下面公式: 在方程(2)中:流体压力,流体中声音的速度。 四个边界条件被用于定义如下情况水库: 1.自由表面边界条件 2. 远程边界条件 3.相交边界条件 4.底部边界条件 在这几个方程中:大坝加速度;地面加速

7、度;垂直向量;流体密度。在水库中产生的加速度与大坝的数量加速度有关。其中:流体密度,坝体密度;声速。 考虑到边界条件和流体方程,水库关系矩阵的构成如下: 图(2):大坝和水库系统公式中:流体质量矩阵;阻尼矩阵;流体刚度矩阵;流体压力向量;单位矩阵;锚加速度向量。 根据应力或应变张量,破裂方向被定义为潜在的导数。潜在损失可以是应力的一个函数或应变 (kolari,2007年),在弥散裂缝模型中,潜在损失是应力的函数,这意味着该裂纹发生时应力达到极限的水平。另外,垂直于最大值的水平裂缝,被视为主应力的拉伸,因此在压应力状态下,没有损坏记录。随着压力的增加,非弹性变形的持久作用导致混凝土变软。在任何

8、时候,混凝土初始边坡的最大抗压强度是平行于加载边坡的。当卸载方向变化时,混凝土(应力-应变)的反应具体是其弹性拉伸应力达到最大,然后发生开裂现象,最终结果导致混凝土的破坏。在该状态下(帮助减少弹性硬度),可以建立起一个裂纹展开的模型。如果再次被施加压缩应力,拉伸应力返回到零,该裂纹将被完全关闭。图3显示了混凝土在压缩和拉伸应力下的变化情况。 图3:混凝土单向应力变化(abaqus理论手册,2009). 根据线弹性断裂力学的标准,裂缝的发展增长过程只发生在最大的裂缝部位,弹性元件的其余部分仍然呈线性变化,此方法适用于损坏面积相对较小的普通结构中。但是,非线性断裂力学模型更适合在巨大的建筑物中使用

9、,如混凝土大坝,它的受损面积是比较大的,这种方法是在能量关系的基础上建立的,并且在断裂力学领域中提出了基于hillerborg (1978) 和bazant (1983) 的两种理论。根据1976年hillerborg提出的模型,损坏的区域被认为是假想裂缝在真正裂缝的高峰期产生的。在 1983 年,bazant表明裂纹的增长和扩张过程发生在条形破裂带上,在本研究中,bazant弥散裂缝模型被用于研究koyna坝。 总结: 在这个研究中,通过采用非线性断裂力学准则和弥散裂缝模型的发展概况,调查了大坝和水库在地震作用下裂缝的相互作用。结果,通过分析在有没有水库的条件下大坝的变化情况,得出以下结论:

10、 1.通过与其他研究人员的结果对比,它显示出这项研究和其他人的引用是比较一致的:如(guanglun等,2000年),(calayir 和 karaton,2005年),(cai 等,2008年),(hal,1988年),(saini 和 krishna, 1974年)。因此,混凝土重力坝的抗震性能在非线性断裂力学准则和弥散裂缝模型的实验中得到了科学的证实。考虑大坝和水库之间的相互作用分析koyna大坝,得到三个薄弱环节:大坝坝踵处,变化的边坡和大坝上部(在其中有大部分裂纹)的一些地区。在分析koyna大坝而忽略水库的影响时所产生的结果后,表明在坝踵裂缝部位,斜率发生了变化。 从分析的结果可以

11、看出,在受损的区域中,大坝和水库之间的相互作用的情况下大坝破坏程度预期的效果大于大坝单独作用的效果。 2.动态分析中使用的的弥散裂缝(延伸裂纹和裂纹扩展的材料的非线性断裂力学标准)的确是更新的物质性能,特别是裂缝能量和材料的性能。 3.如混凝土重力坝,它提供了大范围面积的断裂能根据各种文献,并考虑到此参数与材料在大坝地震裂缝的产生中的重要性,准确的测试也是正确定义材料性能时必要的条件。非线性断裂力学的理论定义的破坏面积和弥散裂缝模型定义的发展裂缝,可以视为一个适当的标准,并为我们提供了结构的实际行为。 参考文献 阿巴克理论手册和用户手册,2009 年. 巴让特.z.p和奥,b.h .混凝土断裂

12、带理论,材料和结构.1983年. 巴塔查尔吉.s.s.和莱热.p.混凝土本构模型的非线性地震反应分析的重力水坝状态的艺术.加拿大土木工程学报,1992年. 巴塔查尔吉.s.s.和莱热.p.应用的nlfm模型,以预测开裂混凝土重力坝,建筑结构学报.1994. 蔡.q和罗伯特.j.m和范伦斯堡b.w.j.有限元的混凝土重力坝裂缝建模.南非土木工程学会杂志,2008年. 克莱尔.y和卡若彤.m.地震裂缝分析混凝土重力坝,坝-水库的相互作用.电脑与结构,2005.乔普拉.a.k.和查克拉巴蒂.p.地震体验江天坝和混凝土重力坝应力.地震工程与结构的动态,1972 年. 乔普拉 a.k .地震期间坝上的动

13、水压力.工程力学部杂志,1967年. 埃尔-艾迪.b和霍尔.j.非线性地震响应的混凝土重力坝第2部分,1989年. 查米安.m和高伯然.a.大坝水库互动与混凝土重力坝非线性的地震反应.工程结构,1999 年. 光轮.w, 派库.o.a,楚汉相.z,少民.w.基于非线性断裂力学的混凝土重力坝地震断裂分析.工程断裂力学分析,2000年. fracture analysis of concrete gravity dam under earthquake induced loadsabbas mansouri;mir ahmad lashteh neshaei;reza aghajany1 civi

14、l engineering, islamic azad university (south branch of tehran)tehran, iran2 civil engineering, university of guilan, rasht, iran3 civil engineering, islamic azad university, (north branch of tehran), tehran, iranabstract: in this paper, seismic fracture behavior of the concrete gravity dam using fi

15、nite element (2d) theory has been studied. bazant model which is non-linear fracture mechanics criteria as a measure of growth and smeared crack was chosen to develop profiles of the crack. behavior of stress - strain curves of concrete as a simplified two-line, dam and reservoir system using the fo

16、rmulation of the euler-lagrange was chosen. according to the above models, koyna concrete gravity dam were investigated by the 1967 earthquake record. the results provide profiles of growth and expansion first with the effects of reservoir and second without it. comparison of the obtained results sh

17、ows good agreement with the works of the other researchers.keywords: seismic fracture; smeared crack; non-linear fracture mechanics; concrete gravity dam. the seismic behavior of concrete dams has been the subject of extensive research during the past decade concerning dam safety during earthquakes.

18、 chopra et al (1972), studies seismic behavior of dams crack path by using linear elastic analysis. the analysis shows, places that are in damage or and risk of the concerning stability of structure. pal (1976) was the first researcher who examined koyna dam by using non-linear analysis. in this res

19、earch, assuming no effect of reservoir, being rigid foundation, smeared crack model use for crack expansion and strength criteria to crack growth, koyna dam was analyzed and was shown that the results of material properties and element size are very sensitive. figure 1(a) crack zone in the dam of wh

20、ich resulting from this analysis are shown. skrikerud (1986) studied concrete dams through a case study on koyna dam and by employing discrete crack for crack growth and strength criteria for crack expansion. in their study the growth of crack at each step of growth, the length of the crack tip elem

21、ent was considered that this is the final results were effective. he interpreted the results of their model, due to expansion mismatch with the cracking in their analysis of real crack in the dam, no match foundation and reservoir interaction and lack of real values of characteristic parameters dam

22、announced.crack profiles from the analysis left in figure 1(b) are presented. el-aidi and hall (1989) did a research on seismic fracture of pine flat dam. smeared crack model and strength criteria for crack expansion and growth were used. in their analysis is considering the reservoir dam and founda

23、tion dam interaction was crack profile presented. figure 1(c), cracking in the dam will provide analysis. fenves and vargas-loli also studied pine flat dam by using fracture mechanics criteria for crack growth and smeared crack model to crack expand (uang and bertero,1990). they apply different coef

24、ficients of taft earthquake record, regardless of the effect by foundation; pine flat dam in two cases with and without the effect of the reservoir was analyzed. in this study the effect of hydrodynamic pressure on the seismic behavior in the dam with the crack profiles presented. the results of thi

25、s analysis were shown in figure 1(d). koy koyna dam is one of a few concrete dams that have experienced a destructive earthquake. in this paper, study the nonlinear fracture behavior of concrete gravity dams under earthquake conditions. first, presented smeared crack model with the behavior of concr

26、ete under dynamic loads and fracture of dams. secondly, seismic behavior of concrete gravity dams was assessed with non-linear analysis to koyna dam with regard dam reservoir interaction and without reservoir using finite element 2d method and presented results of analysis. from the results it is co

27、ncluded that both the upstream and downstream faces of the dam are predicted to experience cracking through the upper part of the dam, which is consistent with the observed prototype behavior. comparison analysis was done showed that the reservoir effect cannot be waived. (d) vargas-loli (c) el-aidi

28、 (b) skrikerud (a) pal (h) experimental model (g) real model (f) bhattacharjee (e) calayir and and leger karaton figure 1: past investigations into cracking profile in gravity dams. euler - lagrange formulation for dynamic interaction of dam - reservoir systems and boundary conditions: different met

29、hods for dam and reservoir modeling are used. the euler - lagrange model is one criteria to used. in this research, the relations of euler - lagrange for dam and reservoir modeling system is investigated.in figure 2, the dam and reservoir boundary condition is presented. according to the finite elem

30、ent theory equations governing the dam is as follows (kucukarslan, 2003): in this equations,=mass matrix,=damping matrix,= structural stiffness matrix,=displacement vector of relative nodal,= unit matrix,= anchor acceleration vector.equation governing the distribution of hydrodynamic pressure in the

31、 fluid environment is well known helmholtz equation by two relations in which presented by the equation below: in equation (2), the fluid pressures, the speed of sound in the fluid.four boundary conditions are used to define the reservoir as follows.1. free surface boundary 2. remote boundary 3. int

32、eraction boundary 4. bottom boundary in this equations,dam acceleration,ground acceleration,vector perpendicular,fluid density. value of acceleration created in the reservoir, is related to the amount of dam acceleration.where:fluid density,dam density,speed of sound. considering the boundary condit

33、ions and fluid equations, the relationship matrix in the reservoir is formed as follows: figure 2: dam and reservoir systemswhere:fluid mass matrix,damping matrix,fluid stiffness matrix,hydrodynamic pressure vector,unit matrix,anchor acceleration vector. rupture direction, is defined by potential de

34、rivative according to stress or strain tensor. loss potential can be either a function of stress or strain (kolari, 2007). in smeared crack model, loss potential is a function of stress. this means that crack happens when the stresses reach the level of submission. also crack levels which are perpen

35、dicular to the maximum, are regarded as the tensile main stress. as a result in the state of compressive stress, no damage is recorded.as stress increases inelastic strains happen and concrete becomes soft. at any point, after the maximum compressive strength of concrete, initial slope is parallel t

36、o loading slope. when the unloading direction changes (strain - stress) the concrete response is to the maximum elastic tensile stress and then crack mechanism occurs. than as a result concrete is damaged. in this state, with the help of reducing elastic hardness, a model can be made out of crack un

37、folding. if the compressive stress is applied again, by returning to zero, the cracks will be closed completely. figure 3 shows the behavior of concrete when placed under compressive and tensile stress. figure 3: uniaxial behavior of plain concrete (abaqus theory manual, 2009). according linear elas

38、tic fracture mechanics criteria, development process of crack and its growth occur only at the peak of crack and the rest of elastic element remains and behaves linearly. this method is applicable in ordinary structure in which damaged area is relatively small. but using nonlinear fracture mechanics

39、 model is more suitable in huge structures such as concrete dams where the damaged area is relatively big. this method is established on the base of energy relations. in the field of fracture mechanics two models have been presented based on hillerborg (1978) and bazant (1983) theories. according to

40、 the model presented by hillerborg in 1976, damaged area is considered as imaginary crack at the peak of the real crack. in 1983; bazant showed that growth and expansion process of crack occur on a stripe. in the present study, bazant smeared crack model is used in studying koyna dam. conclusionin t

41、his research interaction of dam and reservoir under earthquake was examined by employing nonlinear fracture mechanics criterion and smeared crack model of develop profiles of the crack. the results, through analysis in conditions of dam decomposition with reservoir and without it, the following conc

42、lusions were reached: 1.by comparing the results with other researchers it shows a fairly good agreement between this study and the others references: (guanglun et al, 2000), (calayir and karaton, 2005), (cai et al, 2008), (hal, 1988), (saini and krishna, 1974), and therefore the philosophy of the n

43、onlinear fracture mechanics criteria and smeared crack models at proper seismic behavior of concrete gravity dam seems to be confirmed. the obtained results of the analysis of koyna dam considering interaction between dam and reservoir shows there are three vulnerable points: dam heels, changing are

44、as of slope and some areas in upper part in which there are most of the crack elements. the results obtained in the analysis of koyna dam regardless of reservoir effect on the dam, shows cracks in the heel areas of the dam, where the slope change. the results from analyses can be seen in damaged are

45、as and the number of damaged elements in the case of interaction between dam and reservoir intended effect was bigger than effect of dam alone. therefore it is important to attend thehydrodynamic pressure on concrete dam. 2.dynamic analysis was used in the smeared crack to extend crack and the non-l

46、inear fracture mechanics criteria for crack growth profiles is indeed the function of profile material, especially fracture energy and behavior of materials. 3.being given specific structures such as concrete gravity dam, which provide great scope area for fracture energy according to the various re

47、ferences and considering the importance of this parameter with the behavior of materials in the behavior of seismic fracture dams, accurate tests, and also correct definition of material behavior are a necessity. the theory of nonlinear fracture mechanics for defining the fracture area and smeared crack model for defining the develop crack, can be regarded as a proper criterion and provides us with the rea

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论