安徽省长丰县高中数学第三章导数及其应用3.3导数在研究函数中的应用3.3.2函数的极值与导数教案新人教A版选修1-1(new)_第1页
安徽省长丰县高中数学第三章导数及其应用3.3导数在研究函数中的应用3.3.2函数的极值与导数教案新人教A版选修1-1(new)_第2页
安徽省长丰县高中数学第三章导数及其应用3.3导数在研究函数中的应用3.3.2函数的极值与导数教案新人教A版选修1-1(new)_第3页
安徽省长丰县高中数学第三章导数及其应用3.3导数在研究函数中的应用3.3.2函数的极值与导数教案新人教A版选修1-1(new)_第4页
安徽省长丰县高中数学第三章导数及其应用3.3导数在研究函数中的应用3.3.2函数的极值与导数教案新人教A版选修1-1(new)_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、3。3.2函数的极值与导数项目内容课题(共 2 课时)修改与创新教学目标1.理解极大值、极小值的概念;2.能够运用判别极大值、极小值的方法来求函数的极值;3。掌握求可导函数的极值的步骤.教学重、难点教学重点:极大、极小值的概念和判别方法,以及求可导函数的极值的步骤。教学难点:对极大、极小值概念的理解及求可导函数的极值的步骤。教学准备多媒体课件教学过程一、导入新课:观察图3.38,我们发现,时,高台跳水运动员距水面高度最大那么,函数在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律?放大附近函数的图像,如图3。39可以看出;在,当时,函数单调递增,;当时,函数单调递

2、减,;这就说明,在附近,函数值先增(,)后减(,)这样,当在的附近从小到大经过时,先正后负,且连续变化,于是有对于一般的函数,是否也有这样的性质呢?附:对极大、极小值概念的理解,可以结合图象进行说明。并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法。判断极值点的关键是这点两侧的导数异号二、讲授新课:1问题:图3.3-1(1),它表示跳水运动中高度随时间变化的函数的图像,图3.31(2)表示高台跳水运动员的速度随时间变化的函数的图像运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1) 运动员从起

3、点到最高点,离水面的高度随时间的增加而增加,即是增函数相应地,(2) 从最高点到入水,运动员离水面的高度随时间的增加而减少,即是减函数相应地,2函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系如图3.33,导数表示函数在点处的切线的斜率在处,,切线是“左下右上”式的,这时,函数在附近单调递增;在处,切线是“左上右下”式的,这时,函数在附近单调递减结论:函数的单调性与导数的关系在某个区间内,如果,那么函数在这个区间内单调递增;如果,那么函数在这个区间内单调递减说明:(1)特别的,如果,那么函数在这个区间内是常函数3求解函数单调区间的步骤:(1)确定函数的定义域;(2

4、)求导数;(3)解不等式,解集在定义域内的部分为增区间;(4)解不等式,解集在定义域内的部分为减区间三典例分析例1(课本例4)求的极值 解: 因为,所以。下面分两种情况讨论:(1)当0,即,或时;(2)当0,即时.当x变化时, ,的变化情况如下表:-2(-2,2)2+00+极大值极小值因此,当时,有极大值,并且极大值为;当时,有极小值,并且极小值为。函数的图像如图所示。例2求y=(x21)3+1的极值解:y=6x(x21)2=6x(x+1)2(x1)2令y=0解得x1=1,x2=0,x3=1当x变化时,y,y的变化情况如下表1(-1,0)0(0,1)100+0+无极值极小值0无极值当x=0时,

5、y有极小值且y极小值=01.极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点2。极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点3。极大值与极小值统称为极值注意以下几点:()极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小()函数的极值不是唯一的即一个函

6、数在某区间上或定义域内极大值或极小值可以不止一个()极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而 ()函数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点4。 判别f(x0)是极大、极小值的方法:若满足,且在的两侧的导数异号,则是的极值点,是极值,并且如果在两侧满足“左正右负”,则是的极大值点,是极大值;如果在两侧满足“左负右正,则是的极小值点,是极小值5。 求可导函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数f(x) (2)求方程f(x)=0的根

7、(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格。检查f(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f(x)在这个根处无极值如果函数在某些点处连续但不可导,也需要考虑这些点是否是极值点 四、巩固练习:1求下列函数的极值.(1)y=x27x+6 (2)y=x327x(1)解:y=(x27x+6)=2x7令y=0,解得x=。当x变化时,y,y的变化情况如下表.0+极小值当x=时,y有极小值,且y极小值=。(2)解:y=(x327x)=3x227=3(

8、x+3)(x3)令y=0,解得x1=3,x2=3。当x变化时,y,y的变化情况如下表.-3(3,3)3+00+极大值54极小值-54当x=3时,y有极大值,且y极大值=54.当x=3时,y有极小值,且y极小值=54课堂小结:函数的极大、极小值的定义以及判别方法.求可导函数f(x)的极值的三个步骤。还有要弄清函数的极值是就函数在某一点附近的小区间而言的,在整个定义区间可能有多个极值,且要在这点处连续.可导函数极值点的导数为0,但导数为零的点不一定是极值点,要看这点两侧的导数是否异号。函数的不可导点可能是极值点 布置作业:p9899 4,5板书设计3。 3.2函数的极值与导数1。 极大值与极小值的

9、概念2. 判别f(x0)是极大、极小值的方法3. 求可导函数f(x)的极值的步骤: (1)确定函数的定义区间,求导数f(x) (2)求方程f(x)=0的根(3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f(x)在这个根处无极值。例1、例2教学反思在给出极值概念后,要比较、区分极值与最值的关系与区别,求极值时一定要学生注意判断在导数为0的点的两侧的符号,只有导函数异号时,相的点才是极值点.利用导数

10、求极值是导数的重要应用,要补充一定量的练习让学生熟练掌握。对函数的不可导点可能是极值点不做要求。尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。this article is collected and compiled by my colleagues and i in our busy schedule. we proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. if there are omissions, please correct them. i hope this article ca

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论