高中物理 第1章 机械振动 1.3 探究摆钟的物理原理 1.4 探究单摆振动的周期学案 沪科版-4_第1页
高中物理 第1章 机械振动 1.3 探究摆钟的物理原理 1.4 探究单摆振动的周期学案 沪科版-4_第2页
高中物理 第1章 机械振动 1.3 探究摆钟的物理原理 1.4 探究单摆振动的周期学案 沪科版-4_第3页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、学必求其心得,业必贵于专精1。3探究摆钟的物理原理1.4探究单摆振动的周期学习目标 1。理解单摆模型及其振动特点.2.理解单摆做简谐运动的条件,知道单摆振动时回复力的来源。3。知道相位的概念,知道同相振动与反相振动的步调特点.4.会用控制变量法探究单摆的周期与哪些因素有关。5.掌握单摆的周期公式,掌握用单摆测定重力加速度的原理和方法1如图1所示,细线上端固定,下端系一小球,如果细线的伸缩可以忽略,细线的质量与小球相比可以忽略,小球的直径与细线的长度相比也可以忽略,这样的装置就可看成单摆单摆在摆角很小时做简谐运动,其振动图像遵循正弦函数规律图12相是描述振动步调的物理量两个单摆振动步调一致,我们

2、称为同相;两个单摆振动步调正好相反,叫做反相3单摆振动的周期与摆球质量无关,在振幅较小时与振幅无关,周期公式t2.一、探究摆钟的物理原理导学探究一阵风吹过,大厅里的吊灯微微摆动起来,久久不停,伽利略就是通过观察教堂吊灯摆动发现了吊灯摆动的等时性,惠更斯按照伽利略的构想,发明制作了一个摆钟摆钟的往复运动是简谐运动吗?你能用所学的知识证明吗?答案是简谐运动证明:把摆钟等效成一个小球,当小球运动到图中的任意位置p时,小球受到的回复力是小球所受重力g沿着圆弧切线方向的分力g1,fg1mgsin .若摆角很小,则有sin ,并且位移x,考虑了位移和回复力的方向后,有fmg(“”表示回复力f与位移x的方向

3、相反),m是小球的质量,l是摆长,g是重力加速度,它们都有确定的数值,可以用一个常数k来表示,则上式又可以写成fkx,也就是说,在摆角很小时,小球所受到的回复力跟位移大小成正比而方向相反,所以小球做简谐运动知识深化1单摆(1)模型:摆线是不可伸长,且没有质量的细线,摆球是没有大小只有质量的质点,这样的装置叫单摆,它是实际摆的理想化模型(2)实际摆看作单摆的条件:摆线的形变量与摆线的长度相比小得多,摆线的质量与摆球的质量相比小得多,这时可把摆线看成是不可伸长,且没有质量的细线摆球直径的大小与摆线长度相比小得多,这时可把摆球看成是没有大小只有质量的质点2单摆的回复力(1)回复力的提供:摆球的重力沿

4、圆弧切线方向的分力(2)回复力的特点:在摆角很小时,fx。(3)运动规律:在摆角很小时做简谐运动,其振动图像遵循正弦函数规律延伸思考单摆经过平衡位置时,合外力为零吗?答案不为零单摆振动的回复力是重力在切线方向的分力,或者说是摆球所受合外力在切线方向的分力摆球所受的合外力在法线方向(摆线方向)的分力作为摆球做圆周运动的向心力,所以并不是合外力完全用来提供回复力的因此摆球经过平衡位置时,只是回复力为零,而不是合外力为零(此时合外力提供摆球做圆周运动的向心力)例1(多选)图2中o点为单摆的固定悬点,现将摆球(可视为质点)拉至a点,此时细线处于张紧状态,释放摆球,摆球将在竖直平面内的a、c之间来回摆动

5、,b点为运动中的最低位置,则在摆动过程中()图2a摆球在a点和c点处,速度为零,合力也为零b摆球在a点和c点处,速度为零,回复力最大c摆球在b点处,速度最大,回复力也最大d摆球在b点处,速度最大,细线拉力也最大答案bd解析摆球在摆动过程中,在最高点a、c处速度为零,回复力最大,合力不为零,故a错误,b正确;在最低点b处,速度最大,回复力为零,摆球做圆周运动,细线的拉力最大,故c错误,d正确二、研究振动的步调问题导学探究1如图3所示,在铁架台上悬挂两个相同的单摆,将两个摆球拉离平衡位置且保证摆角相同,然后同时放开,可观察到什么现象?答案它们的运动总是一致的,也可以说是步调一致,即同时沿相同方向经

6、过平衡位置,并同时达到同一侧最大位移处 图3 图42如图4所示,再将两个摆球拉开相同的摆角,先放开一个,等它摆到另一边最大位移处时,再放开第二个,又可观察到什么现象?答案它们的运动总是相反的,也可以说是步调相反,即同时沿相反方向经过平衡位置,并同时达到两侧最大位移处知识深化1相(或相位、位相、周相):描述振动步调的物理量(1)两个单摆振动步调一致,称为同相;(2)两个单摆振动步调不一致,就说它们存在着相差;(3)两个单摆振动步调正好相反,叫做反相2相差:指两个相位之差在实际中经常用到的是两个具有相同频率的简谐运动的相位差,反映出两简谐运动的步调差异例2(多选)如图5所示是在同一个坐标系里画出的

7、三个振动系统的振动图像,下列说法正确的是()图5aa、b、c三个振动系统的频率相同ba、b两个系统振动时存在着相差ca、b两个系统振动同相da、c两个系统振动反相答案acd解析由题图可知,三个振动系统的周期相同,故频率相同,a正确;a、b两个系统振动的振幅不同,但总是同时来到正向(或负向)的最大位移处,同时同方向经过平衡位置,故a、b同相,b错误,c正确;a、c两个系统总是同时来到反向的最大位移处,同时以相反方向经过平衡位置,故a、c反相,d正确三、探究单摆振动的周期导学探究1如图6所示,两个单摆同时释放,我们可以观察到振动的周期不同影响周期的因素可能有单摆的质量、振幅、摆长,这么多因素我们应

8、采用什么方法研究?图6答案控制变量法具体做法为:(1)只让两摆的质量不同(2)只让两摆的振幅不同(都在小摆角下)(3)只让两摆的摆长不同比较以上三种情况下两摆的周期,可以得到周期与质量、振幅、摆长之间的定性关系2具体做法是什么?得出影响周期的因素是什么?答案首先,研究周期和质量有没有关系,就应控制其他条件不变做法:用两个摆长相同,摆球质量不同的单摆将它们拉到同一个高度(注意摆角要小)释放,观察两摆的运动现象:两摆球摆动总是同步的,说明两摆球周期相同,即周期与摆球质量无关其次,研究单摆的周期和振幅的关系做法:用一个单摆,分两次从不同高度释放(振幅不同),用秒表测量单摆振动30次所用时间并比较两次

9、所用时间结论:两次所用时间近似相等,故周期与振幅无关再次,研究单摆的周期和摆长的关系做法:取两个摆长不同,质量相同的两个摆球从同一高度同时释放,观察两摆的运动现象:两摆振动不同步,摆长大的振动慢,说明单摆的周期与摆长有关由此可知单摆的周期与摆球质量、振幅无关,与摆长有关知识深化1单摆的周期公式t2。2摆长l(1)实际的单摆的摆球不可能是质点,所以摆长应是从悬点到摆球球心的长度:即ll,l为摆线长,d为摆球直径(2)等效摆长:如图7所示,甲、乙在垂直纸面方向摆起来的效果是相同的,所以甲摆的摆长为lsin ,这就是等效摆长,所以其周期为t2.图73重力加速度g若系统只处在重力场中且处于静止状态,g

10、由单摆所处的空间位置决定,即g,式中r为物体到地心的距离,m为地球的质量,g随所处地表的位置和高度的变化而变化另外,在不同星球上,m和r一般不同,g也不同,g取9.8 m/s2只是在地球表面附近时的取值例3如图8所示,mn为半径较大的光滑圆弧轨道的一部分,把小球a放在mn的圆心处,再把另一小球b放在mn上离最低点c很近的b处,今使两球同时自由释放,则在不计空气阻力时有()图8aa球先到达c点bb球先到达c点c两球同时到达c点d无法确定哪一个球先到达c点答案a解析a做自由落体运动,到达c所需时间ta ,r为圆弧轨道的半径因为圆弧轨道的半径r很大,b球离最低点c又很近,所以b球在轨道给它的支持力和

11、重力的作用下沿圆弧做简谐运动(等同于摆长为r的单摆),则运动到最低点c所用的时间是单摆振动周期的,即tb ta,所以a球先到达c点四、测定当地的重力加速度导学探究在地球表面,不同纬度重力加速度不同,不同高度重力加速度不同,利用本学案的知识怎样测出当地的重力加速度?答案由单摆周期公式得g,如果测出单摆的摆长l、周期t,就可以求出当地的重力加速度g.知识深化1原理:测出摆长l、周期t,代入公式g,求出重力加速度g。2器材:铁架台及铁夹,金属小球(有孔)、停表、细线(1 m左右)、米尺、游标卡尺3实验步骤(1)让细线穿过金属小球上的小孔,在细线的一端打一个稍大一些的线结,制成一个单摆(2)将铁夹固定

12、在铁架台上端,铁架台放在实验桌边,使铁夹伸出桌面之外,然后把单摆上端固定在铁夹上,使摆球自由下垂在单摆平衡位置处做上标记(3)用米尺量出悬线长l(准确到mm),用米尺和三角板(或游标卡尺)测出摆球的直径d(准确到mm),然后计算出悬点到球心的距离ll即为摆长(4)把此单摆从平衡位置拉开一个角度,并使这个角度不大于5,再释放小球当小球摆动稳定以后,经过最低位置时,用停表开始计时,测量单摆全振动30次(或50次)的时间,求出一次全振动的时间,即单摆的振动周期(5)改变摆长,反复测量三次,算出周期t及测得的摆长l代入公式g,求出重力加速度g的值,然后求g的平均值,即为当地的重力加速度的值4五点注意(

13、1)选择材料时应选择细而不易伸长的线,比如用单根尼龙丝、丝线等,长度一般不应短于1 m,小球应选用密度较大的金属球,直径应较小,最好不超过2 cm。(2)单摆悬线的上端不可随意卷在铁夹的杆上,应夹紧在铁夹中,以免摆动时发生摆线下滑、摆长改变的现象(3)注意摆动时控制摆线偏离竖直方向的角度应很小(4)小球摆动时,要使之保持在同一竖直平面内,不要形成圆锥摆方法是将小球拉到一定位置后由静止释放(5)计算单摆的振动次数时,应从摆球通过最低位置时开始计时,以后摆球应从同一方向通过最低点时计数,要多测几次(如30次或50次)全振动的时间,用取平均值的办法求周期例4下表是“用单摆测定重力加速度”实验中获得的

14、有关数据:摆长l/m0.40。50.60.81。01.2周期平方t2/s21。62.22。43。24。04.8(1)利用上述数据,在图9中描出lt2的图像图9(2)利用图像,取t25.2 s2时,l_ m,重力加速度g_ m/s2.答案(1)见解析图(2)1。39。86解析(1)描点作图如图所示(2)由图可知,当t25.2 s2时,l1.3 m,将它代入g得:g m/s29。86 m/s2。单摆1(多选)单摆是为研究振动而抽象出的理想化模型,其理想化条件是()a摆线质量不计b摆线长度不伸缩c摆球的直径比摆线长度短得多d只要是单摆的运动就是一种简谐运动答案abc解析单摆由摆线和摆球组成,摆线只计

15、长度不计质量,摆球只计质量不计大小,且摆线不伸缩但把单摆作为简谐运动来处理是有条件的,只有在摆角很小(5)的情况下才能视单摆运动为简谐运动,故正确答案为a、b、c。2单摆振动的回复力是()a摆球所受的重力b摆球重力在垂直悬线方向上的分力c悬线对摆球的拉力d摆球所受重力和悬线对摆球拉力的合力答案b解析摆球振动的回复力是其重力沿圆弧切线方向的分力,即摆球重力在垂直悬线方向上的分力,b正确3已知单摆a完成10次全振动的时间内,单摆b完成6次全振动,两摆长之差为1.6 m,则两单摆长la与lb分别为()ala2.5 m,lb0.9 mbla0。9 m,lb2.5 mcla2.4 m,lb4.0 mdl

16、a4.0 m,lb2.4 m答案b解析设两个单摆的周期分别为ta和tb,由题意10ta6tb,得tatb35。根据单摆周期公式t2 ,可知lt2,由此得lalbtt925.则la1.6 m0。9 m,lb1.6 m2.5 m。4用单摆测定重力加速度,根据的原理是()a由g看出,t一定时,g与l成正比b由g看出,l一定时,g与t2成反比c由于单摆的振动周期t和摆长l可用实验测定,利用g可算出当地的重力加速度d同一地区单摆的周期不变,不同地区的重力加速度与周期的平方成反比答案c解析g是由所处的地理位置的情况来决定的,与l及t无关,故只有c正确课时作业一、选择题1当单摆的摆球摆到最大位移处时,摆球所

17、受的()a合外力为零 b回复力为零c向心力为零 d摆线中张力为零答案c解析当摆球摆到最大位移处时,回复力最大,不为零,合外力不为零,所以选项a、b均错;由向心力公式f可知,摆球在最大位移处时,速度为零,向心力也为零,此时摆线中的张力等于重力沿摆线方向上的分力,所以选项c对,d错2将秒摆(周期为2 s)的周期变为1 s,下列措施可行的是()a将摆球的质量减半 b将振幅减半c将摆长减半 d将摆长减为原来的答案d解析由单摆周期公式t2可以看出,要使周期减半,摆长应减为原来的.3如图1所示,在两根等长的细线下悬挂一个小球(体积可忽略)组成了所谓的双线摆,若摆线长为l,两线与天花板的左右两侧夹角均为,当

18、小球垂直纸面方向做简谐运动时,周期为()图1a2 b2 c2 d2 答案d解析这是一个变形的单摆,可以用单摆的周期公式t2计算,但注意此处的l与题中的绳长不同,公式中的l是指质点到悬点(等效悬点)的距离,即做圆周运动的半径此题中单摆的等效摆长为lsin ,代入周期公式,可得t2 ,故选d。4利用单摆测重力加速度时,若测得g值偏大,则可能是因为()a单摆的摆球质量偏大b测量摆长时,只考虑了悬线长,忽略了小球的半径c测量周期时,把n次全振动误认为是(n1)次全振动d测量周期时,把n次全振动误认为是(n1)次全振动答案c解析由单摆周期公式知t2,得g,而t,所以g,由此可知c正确5(多选)如图2甲所

19、示,一个单摆做小角度摆动,从某次摆球由左向右通过平衡位置时开始计时,相对平衡位置的位移x随时间t变化的图像如图乙所示不计空气阻力,g取10 m/s2.对于这个单摆的振动过程,下列说法中正确的是()图2a单摆的位移x随时间t变化的关系式为x8sin (t) cmb单摆的摆长约为1 mc从t2.5 s到t3 s的过程中,摆球的重力势能逐渐增大d从t2.5 s到t3 s的过程中,摆球所受绳子拉力逐渐减小答案ab解析由题目中振动图像可读出周期t2 s,振幅a8 cm,由得到圆频率 rad/s,则单摆的位移x随时间t变化的关系式为xasin t8sin (t) cm.故a正确由公式t2,代入得到l1 m

20、故b正确从t2.5 s到t3 s的过程中,摆球从最高点运动到最低点,重力势能减小,故c错误从t2。5 s到t3 s的过程中,摆球的位移减小,回复力减小,速度增大,所需向心力增大,绳子的拉力增大,故d错误6(多选)如图3所示为甲、乙两单摆的振动图像,则()图3a若甲、乙两单摆在同一地点摆动,则甲、乙两单摆的摆长之比为l甲l乙21b若甲、乙两单摆在同一地点摆动,则甲、乙两单摆的摆长之比为l甲l乙41c若甲、乙两单摆摆长相同,且在不同的星球上摆动,则甲、乙两单摆所在星球的重力加速度之比为g甲g乙41d若甲、乙两单摆摆长相同,且在不同的星球上摆动,则甲、乙两单摆所在星球的重力加速度之比为g甲g乙14答

21、案bd解析由题图可知t甲t乙21,若两单摆在同一地点,则两摆长之比为l甲l乙41,故b正确,a错误;若两摆长相等,则所在星球的重力加速度之比为g甲g乙14,故d正确,c错误7一个单摆的摆球偏离到最大位置时,正好遇到空中竖直下落的雨滴,雨滴均匀附着在摆球的表面,下列说法正确的是()a摆球经过平衡位置时速度要增大,周期也增大,振幅也增大b摆球经过平衡位置时速度没有变化,周期减小,振幅也减小c摆球经过平衡位置时速度没有变化,周期也不变,振幅要增大d摆球经过平衡位置时速度要增大,周期不变,振幅要增大答案d解析在最大位移处,雨滴落到摆球上,质量增大,同时摆球获得初速度,故振幅增大,但摆球质量不影响周期,周期不变选项d正确二、非选择题8某实验小组在利用单摆测定当地重力加速度的实验中:(1)用游标卡尺测定摆球的直径,测量结果如图4所示,则该摆球的直径为_cm。图4(2)小组成员在实验过程中有如下说法,其中正确的是_(填选项前的字母)a把单摆从平衡位置拉开30的摆角,并在释放摆球的同时开始计时b测量摆球通过最低点100次的时间t,则单摆周期为c用悬线的长度加摆球的直径作为摆长,代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论