版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、一次函数和二元一次方程组一次函数和二元一次方程组 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(一次函数和二元一次方程组)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为一次函数和二元一次方程组的全部内容。19.2。3一次函数与方程、不等式一次函数与二元一次方程组第二课时教学目标1、知识和技能 使学生理解二元一次方程组的解
2、是两条直线的交点坐标,并能通过图象法来求二元一次方程组的解.2、过程和方法 通过对一次函数与一元一次方程、一元一次不等式关系的探究,引导学生认识事物部分与整体的辩证统一关系,发展学生的辩证思维能力。3、情感态度和价值观 在探究活动中,让学生体会数学知识的融会贯通,发现数学的美,以激发学生学习数学的兴趣和克服困难的信心.教学重难点【重点】1。理解一次方程、一元一次不等式与一次函数的转化关系及本质联系。2.掌握用图象求解方程、不等式的方法.【难点】根据一次函数的图象求解方程和不等式.教学过程一、新课导入探究一次函数与方程组的关系思路一探究:1号探测气球从海拔5 m处出发,以1 m/min的速度上升
3、。与此同时,2号探测气球从海拔15 m处出发,以0。5 m/min的速度上升。两个气球都上升了1 h。(1)用式子分别表示两个气球所在位置的海拔y(单位:m)关于上升时间x(单位:min)的函数关系;(2)在某个时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?引导学生从实际问题中抽象出具体的数学问题,并应用所学方法求解。帮助学生建立函数模型,得到不同的解决方法,并展示规范解答.解:(1)两个气球所在位置的海拔高度y(m)与上升时间x(min)的函数关系分别是:1号气球:y=x+5;2号气球:y=0。5x+15.自变量x的范围是0x60.追问:“在某个时刻两个气球位于
4、同一高度”说明它们两个函数关系式中的x和y的值要满足什么关系?如何求出x和y的值?学生思考后总结.在某时刻两个气球位于同一高度,就是说对于x的某个值,函数y=x+5和y=0.5x+15有相同的值y。由此容易想到解二元一次方程组。解:(2)由题意得 解得当上升20 min时,两个气球都位于海拔25 m的高度。追问:在同一直角坐标系中,画出一次函数y=x+5和y=0.5x+15的图象,观察这两条直线有交点吗?并思考:交点坐标是不是的解?为什么?学生画图后发现,这两条直线的交点为(20,25),说明当上升20 min时,两个气球都位于海拔25 m的高度.也就是说交点坐标也就是方程组的解. 教师引导学
5、生归纳总结:(1)一般地,因为每个含有未知数x和y的二元一次方程,都可以改写成y=ax+b的形式,所以每个这样的方程都对应一个一次函数,于是也对应一条直线,这条直线上每个点的坐标(x,y)都是这个二元一次方程的解。 同样,任意一个二元一次方程组都对应着两个一次函数和两条直线,这两条直线的交点坐标是该二元一次方程组的解。(2)从“数”的角度看:解二元一次方程组,相当于求自变量为何值时两个函数的函数值相等,以及这个函数值是多少.从“形”的角度看:解二元一次方程组,相当于确定两条相应直线的交点.设计意图通过活动,从数和形两个角度认识了一次函数与二元一次方程组的关系.思路二1.一次函数与二元一次方程的
6、关系.(1)对于方程3x+5y=8如何用x表示y?是不是任意的二元一次方程都能转化成一次函数呢?(2)在平面直角坐标系中画出一次函数y=-x+的图象。(3) 在一次函数y=x+的图象上任取一点(x,y),则x,y一定是方程 3x+5y=8的解吗?为什么?学生独立完成后同桌交流,教师再引导学生归纳总结: 方程3x+5y=8的解点(s,t)在一次函数y=x+的图象上2。一次函数与二元一次方程组的关系.观察在同一直角坐标系中的y=2x1与y=x+的图象,两条直线的交点坐标是。方程组 的解是。小组讨论,完成填空后,进行验证.教师说明:(1)任何一个方程组都可以看成是两个一次函数的组合;(2)求方程组的
7、解就是求两个函数值相等时,自变量的值和函数值;(3)根据方程组的解的意义和函数的观点,就是当x取什么数值时,两个一次函数的y值相等?它反映在图象上,就是求直线y=2x1与直线y=x+的交点坐标.教师引导归纳:设计意图通过问题解决,由特殊过渡到一般,从数和形两个角度认识了一次函数与二元一次方程、二元一次方程组的关系.4。例题讲解(补充)某商店销售10台a型和20台b型电脑的利润为4000元,销售20台a型和10台b型电脑的利润为3500元。(1)求每台a型电脑和b型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中b型电脑的进货量不超过a型电脑的2倍.设购进a型电脑x台,这1
8、00台电脑的销售总利润为y元。求y关于x的函数关系式;该商店购进a型、b型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对a型电脑出厂价下调m(0m100)元,且限定商店最多购进a型电脑70台。若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.师生共同分析:(1)设出每台a型电脑和b型电脑的销售利润,因为销售10台a型和20台b型电脑的利润为4000元,销售20台a型和10台b型电脑的利润为3500元,可列出二元一次方程组求解.(2)由计划一次购进两种型号的电脑共100台和(1)问中的结论等条件,构建y关于x的函数关系式,
9、再由“b型电脑的进货量不超过a型电脑的2倍”求出自变量的取值范围,最后由一次函数的增减性得出销售总利润最大的进货方案。(3)由(2)问中的条件和(3)中信息构建含参数m的一次函数关系式并确定自变量的取值范围,依据m的不同取值范围讨论一次函数的增减性,从而确定m取值范围不同情况下销售总利润最大的进货方案.解:(1)设每台a型电脑的销售利润为a元,每台b型电脑的销售利润为b元,则有: 解得 即每台a型电脑的销售利润为100元,每台b型电脑的销售利润为150元.(2)根据题意,得y=100x+150(100x),即y=-50x+15000。根据题意,得100-x2x,解得x33.y=50x+1500
10、0中,-500,y随x的增大而减小。x为正整数,当x=34时,y取得最大值,此时100x=66。即商店购进a型电脑34台,b型电脑66台,才能使销售总利润最大。(3)根据题意,得 y=(100+m)x+150(100x),即y=(m-50)x+15000.由题意得33x70。当0m50时,m-500,y随x的增大而减小。当x=34时,y取得最大值.即商店购进34台a型电脑和66台b型电脑才能获得最大利润;当m=50时,m-50=0,y=15000.即商店购进a型电脑数量满足33x70的整数时,均获得最大利润;当500时,则在x=a处取最小值,在x=b处取最大值;当k0时,结论正好相反。设计意图
11、进一步加强一次函数综合性问题的分析,提高解决问题的能力和应用数学知识的能力.二、课堂小结师生共同回顾本节课所学主要内容.一次函数与方程、不等式的关系:从数的角度看从形的角度看求方程ax+b=0(a, b是常数,a0)的解x为何值时y=ax+b的值为0求直线y= ax+b与x轴交点的横坐标求不等式ax+b0(a0)的解集x为何值时,y=ax+b的值大于0直线y=ax+b在x轴上方时所对应的x的取值范围求二元一次方程组的解解二元一次方程组就相当于求自变量为多少时,两个函数值相等,以及这个函数值是多少解二元一次方程组相当于求两条直线交点的坐标三、板书设计19.2.3一次函数与方程、不等式1、一次函数
12、与方程组的关系2、例题讲解四、作业布置一、教材作业【必做题】教材第98页练习第1题;教材第99页习题19.2第10题.【选做题】教材第100页习题19。2第15题.2、 课后作业1.。一家电信公司给顾客提供两种上网收费方式:方式a以每分0。1元的价格按上网时间计费;方式b除收月基费20元外再以每分0.05元的价格按上网时间计费。如何选择收费方式能使上网者更合算?答案:.解:设上网时间为x分钟,方式a收费为y=0.1x(元);方式b收费为y=0.05x+20(元)。如图所示,两图象交于点(400,40),从图象上可以看出:这表示当x=400时,两个函数的值相等,都等于40。因此上网时间为400分
13、时,两种方式计费相等,都是40元.即当0x400时,0.1x0。05x+20,当x=400时,0。1x=0。05x+20,当x400时,0.1x0。05x+20.因此,当一个月内上网时间少于400分钟时,选择方式a省钱;当上网时间等于400分钟时,选择方式a,b没有区别;当上网时间多于400分钟时,选择方式b省钱。教学反思 本节内容的本质是通过研究一次函数与方程、不等式的关系解决与一次函数相关的实际问题. 把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.整节课以“问题情境分析探究总结升华”为主线,使学生亲身经历一次函数与方程、不等式的探索,培养学生的数形结合的能力,努力做到由传统
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 非营利组织安全培训方案
- VR游戏广告合同
- 《分期工资协议》
- 航空航天行业复合材料加热炉合同
- 跨境电商数据分析咨询协议书
- 家长网络监控与教育方案
- 核电行业特种作业人员管理制度
- 教育信息化设备使用与管理办法
- 金融行业高可用服务器解决方案
- 住宅楼盘转让协议书
- 《2024版CSCO胰腺癌诊疗指南》更新要点 2
- +陕西省渭南市富平县2023-2024学年九年级上学期摸底数学试卷
- 2023年法律职业资格《客观题卷一》真题及答案
- 公司培训工作报告6篇
- 2024中国民航机场建设集团限公司校园招聘304人高频考题难、易错点模拟试题(共500题)附带答案详解
- 血液透析患者安全管理应急预案及处理课件
- 音乐治疗服务行业发展趋势及前景展望分析报告
- 摊位入股合同范本
- 2024年人教版八年级地理上册全册基础知识点复习提纲
- 续保赠送活动方案
- 安全隐患排查检讨反思
评论
0/150
提交评论