关于沼气的文献翻译_第1页
关于沼气的文献翻译_第2页
关于沼气的文献翻译_第3页
关于沼气的文献翻译_第4页
关于沼气的文献翻译_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、生物质能和沼气发电近期发展与看法生物质能和沼气发电近期发展与看法Abdeen Mustafa OmerUON, Forest Road West, Nottingham NG7 4EU, UK 生物质沼气作为替代能源的潜力,可能是因为生物质资源丰富。这是一些关于沼气技术的观点。对于目前文献关于沼气技术的生态,社会,文化和经济的影响。本文给出了一个作为现在和未来使用生物质能作为工业原料用于生产燃料、化学品和其他材料的介绍。然而,要真正在一个开放的市场竞争力的情况下生存,需要更高价值的产品。结果表明,沼气技术必须鼓励,促进,投资,实施,论证,尤其是在偏远的农村地区1。关键字:生物质资源/沼气应用/

2、可持续发展/环境能源是一个重要因素,因为它的发展刺激,并支持着经济的增长与发展。化石燃料在一定范围内是有限的,特别是石油和天然气,应作为消耗资产,并努力寻找新能源。各地的呼吁要节省能源但环境问题加剧、传统的能源继续萎缩,环境也变得日益退化。传统的生物质能主要来自木柴,木炭和作物残留物。在总薪材和竹炭用品中92在家庭部门消耗,其中大多数是农村地区的柴火消费。燃烧仍然是供热和发电(用蒸汽为原料烘干机的涡轮机)的首选方法,而通过厌氧消化或在垃圾填埋场生产沼气,被广泛用于valorisation的湿残留物和液体污水为热发电(使用天然气发动机或燃气涡轮机)。此外,一些液体燃料的生产来自于种植的作物(乙醇

3、甘蔗,甜菜,玉米,高粱和小麦)。虽然废物的利用和残留已建立了基本转换技术,仍然需要通过气化处理和热解,与联合循环来研究开发和尝试提高热效率。同一时间正在努力增加植物性的非食品原料的范围。实现正在采取这几种方法。 “首先是要提供成本较低的原料散装化学品和原料生产可用于洗涤剂,塑料,油墨,油漆和其他表面涂层。在很大程度上,这些都是基于植物油或淀粉水解发酵产生的乳酸。优点是可生物降解,与生物系统的相容性(因此,在使用更少过敏反应)和备件化石的二氧化碳排放量(与气候相关)。消费者的喜好与经济与环境效益价值相关,有助于在这方面增加生产。第二扩大活动是利用植物纤维,不仅非树的纸张,也可作为代替石油为基础的

4、塑料包装和部件,如汽车零部件。这些可能源自非织造纤维,或基于生物复合材料(在一个合适的塑料纤维素芯片矩阵)。另一方面,新胶合的方法,加强保护和成型木材增加建设大型结构与预测长寿命。这些措施包括广泛的天然产品,如香料,香精胶体和生物控制剂。尽管几十年的研究和开发,工程技术(重组DNA技术)正被广泛应用,以实现这一目标,以及引进新航线,以不寻常的脂肪酸和其他有机化合物。此外这种技术被用来帮助植物构造新的蛋白质,可作为疫苗使用或其他治疗使用。所有这些作物的非食品用途加工将再次生成残渣和副产品,可作为能量来源,供内部使用处理,或出口到其他用户,可能未来的大多产品是生物质为基础的工业物。技术说明厌氧微生

5、物发酵形成沼气。 降解是非常复杂的过程,需要一定的环境条件以及不同的细菌种群。 完整的厌氧发酵过程下面简要介绍,如表1所示,沼气是一个相对高值的在厌氧过程中利用有机物的降解形成的燃料。这个过程已经知道,并投入到工作中在过去30年被应用于不同的行业,农村的需要,如2:供水,粮食安全,健康,教育和通讯。在过去的几十年世界各地建立了数千沼气工程,生产的甲烷用来做饭,抽水和发电。为了不重复成功的深入当地的条件和认真规划要求3。 应实现的目标: 用计算机模型和手册审查和交流有利于对生物质能沼气的经济评价。 利用信息交流系统分析从个案研究的成果。 调查实施商业沼气能源供应上的限制。 调查来自不同行业的原料

6、之间的供应和需求的关系。 间接评价的方法原则的后果,如对影响增长,育林治疗,就业。表(1)厌氧降解有机物4LevelSubstanceMoleculeBacteriaInitialManure,vegetable,wastersCellulose,peoteinsCellulolytic,proteolyticIntermediateAcide,gases,oxidised,inorganic saltsCH3COOH,CHOOH,SO4,CO2,H2,NO3Acidogenic, hydrogenic, sulfatereducingFinalBiogas,reduced inorganic

7、 compoudsCH4,CO2,H2S,NH3,NH4Methane formers沼气技术不能只提供燃料,全面利用林业生物质能,动物畜牧业,渔业,农业经济,保护环境,实现农业循环,以及改善卫生条件,在农村地区同样重要。 “沼气技术的引进规模上有宏观规划的影响如政府分配投资和收支平衡的影响。沼气厂验收的确定率的因素,如信贷,设施和后期服务,可能有计划作为一般宏观政策,成为研究的分配和发展基金的一部分5。沼气是一种常见的从有机物质的分解中产生的气体。由于材料分解,甲烷来源纷繁多样。包括垃圾填埋场,污水处理厂和厌氧沼气池。垃圾填埋场和污水处理厂产生的沼气。到目前为止,废物处理业一直专注于控制排放

8、到环境中的污染物,在某些情况下,可作为电力燃气涡轮机的潜在来源,从而产生电力。垃圾填埋气体成分是甲烷,二氧化碳和氮气。甲烷平均浓度为45,CO236,氮18。其他气体是氧气(O2)、水蒸汽和微量非甲烷有机化合物的范(NMOCs)6。对于热水和暖气,可再生能源来自生物质发电和热,地热,地源热泵和屋顶太阳能加热系统。太阳能辅助冷却是一个非常小,但增长的贡献。当涉及到大的安装光伏发电量,几个城市有共同因素。这些因素包括:l 一个强大的对环境和可持续发展的政治承诺。l 执政的市部门或办事处,致力于环境,可持续发展或可再生能源。l 有关资料提供可再生能源的可能性。l 部分或所有建筑物的义务包括可再生能源

9、沼气的使用情况在过去的二十年,人类变得越来越关注枯竭化石燃料储量和二氧化碳的排放量对气候变化的影响。因此,延伸了使用可再生资源,高效节能生产和节能减排为主要目标的可持续的能源供应。可再生能源来源包括水和风力发电,太阳能和地热能源,以及生物质能源。该技术可实现和实际使用这些能源,虽然在欧洲各地不同,但生物量被视为有很大的潜力在其中许多人看来。生物能源,一个转换为有效的方法,在缺氧的情况微生物降解有机物(厌氧消化)生产沼气。它现在是有可能在农村安装产生沼气,升级到生物甲烷,天然气管网送入,在使用控制热量需求的热电联产和接收收入。沼气是一种混合物,甲烷(按体积的50-65)、二氧化碳。沼气是一种宝贵

10、的燃料。湿-95)与低木质素的有机材料和纤维素一般适合厌氧消化7。一个值得关注问题是,污泥处理,往往集中了重金属,目前在废水极少有可生物降解的微量有机化合物和潜在的病原微生物(病毒,细菌和类似)。这些材料严重威胁环境。当沉积在土壤中,重金属通过食物链,首先进入农作物,然后动物饲料作物上,最终人类,他们似乎是高度有毒的。此外,他们还存在于土壤中,进入地下水,并进一步以不受控制的方式传播污染。欧洲和美国市场旨在改造各种有机废物(动物农场废物,工业和城市垃圾)分为两个主要的副产品:n 解决的腐殖质(液体氧化抗坏血酸)。n 固体残渣。沼气生态优势技术一个更简单的情况是,可以发现在不同的生态效应中沼气综

11、合利用的途径。比较不同的沼气利用工艺过程是8:u 沼气利用热需求控制天然气发动机提供出来的500千瓦的天然气网 - 电效率为37.5,42.5的热效率,甲烷0.01损失u 沼气利用在当地的燃气发动机,在沼气厂安装500千瓦 - 37.5的发电效率,热效率42.5,而0.5甲烷亏损。u 基于玉米生产沼气使用沼气厂盖储罐 - 甲烷损失1的沼气生产。u 沼气与电源升级消费0.3 kWhe/m3沼气 - 0.5甲烷损失。沼气可转换能源的几个方法。主要利用热电联产(CHP)9,在沼气生产的地方安装汽油发动机。这一点主要有两个原因。首先,沼气生产是一个几乎持续不断的过程,在短期它是相当困难的,甚至是不可能

12、的,以控制根据厌氧沼气池操作任何给定的需求配置文件。其次,致力于促进可再生能源电力生产。正因为如此,沼气厂的运营商收到的主要收入是保证饲料的电费。小结生态平衡的结果变得明显 - 不仅使用化石燃料,而且还通过使用可再生燃料如沼气 - 热电联产是气候变化问题作斗争的最佳方式。从技术角度查看它可以得出结论,沼气生产,即,可再生能源的转换资源和能源的生物垃圾,可以看出作为国家的最先进的技术10。生物质能和可持续发展在能源和人类可持续发展之间有一个明确无误的链接。能源本身并不是目的,而是一个重要的工具来促进社会和经济活动。因此,缺乏可用的能源服务与许多可持续发展的挑战密切相关,例如创造就业机会。重视机构

13、建设,加强政策对话有必要建立社会,经济和在政治上有利的一个过渡的条件一个更可持续的未来。另一方面,生物质能技术是有前途的选择,一个潜在的大苏丹与其他发展中国家的影响,地方能源目前的水平服务是低的。有关生物量帐户三分之一的所有发展中国家的能源国家作为一个整体,近96在某些最不发达国家11。建议1.沼气技术的大规模引进的宏观影响如分配计划对政府投资和影响国际收支平衡表。沼气验收率的决定因素,如信贷和技术备份服务,很可能作为一般宏观政策的一部分,因为这样做的分配的研究和发展资金.2. 在一些农村社区,普遍的文化信仰关于处理动物粪便会影响的沼气技术可接受性12。3. 统筹生产和使用沼气,化肥和污染控制

14、优化推广和发展在农村的农业和畜牧业领域。结论(1)沼气技术,不仅可以提供燃料,在农村领域同样重要的是全面的利用林业生物质能,动物畜牧业,渔业,农业经济,保护环境,实现农业循环再造,以及改善卫生条件,。2)生物质能源,其中一个重要选项,这可能会逐渐取代对石油的需求,任何一个县可以依赖的生物能源以满足本地消费的一部分。3)沼气技术的发展是一个农村替代能源的重要组成部分,其潜力仍有待利用。所有需要协调一致的效果如果可以实现,该技术将准备利用在国内,农业,小规模的工业应用。4)支持与先进国家在生物研究这一领域的交流。在此期间,生物质能能源可以帮助保存即将耗尽的石油财富。5)递减的农业用地会阻碍沼气能源

15、开发,但适当的技术和资源管理技术,将抵消影响。参考文献 1. Robinson, G. 2007. Changes in construction waste management. Waste Management World p. 43-49. May-June 2007. 2. Sims, R.H. 2007. Not too late: IPCC identifies renewable energy as a key measure to limit climate change. Renewable Energy World 10 (4): 31-39. 3. Omer, A.M.

16、, et al. 2003. Biogas energy technology in Sudan. Renewable Energy, 28 (3): 499-507. 4. Omer, A.M. 2007. Review: Organic waste treatment for power production and energy supply. Cells and Animal Biology 1 (2): 34-47. 5. Omer, A. M. 2007. Renewable energy resources for electricity generation. Renewabl

17、e and Sustainable Energy Reviews, Vol.11, No.7, p. 1481-1497, United Kingdom, September 2007.6. Bacaoui, A., Yaacoubi, A., Dahbi, C., Bennouna, J., and Mazet, A. 1998. Activated carbon production from Moroccan olive wastes-influence of some factors. Environmental Technology 19: 1203-1212. 7. Rossi,

18、S., Arnone, S., Lai, A., Lapenta, E., and Sonnino, A. 1990. ENEAs activities for developing new crops for energy and industry. In: Biomass for Energy and Industry (G. Grassi, G. Gosse, G. dos Santos Eds.). Vol.1, p.107-113, Elsevier Applied Science, London and New York. 8. Omer, A.M. 1996. Renewable

19、 energy potential and future prospects in Sudan. Agriculture Development in Arab World 3: 4-13. 9. FAO. 1999. State of the worlds forest. Rome: FAO. 10. Haripriye G. 2000. Estimation of biomass in India forests. Biomass and Bioenergy 19: 245-58. 11. Hall O. and Scrase J. 1998. Will biomass be the en

20、vironmentally friendly fuel of the future? Biomass and Bioenergy 15: 357-67. 12. Omer, A.M. 2005. Biomass energy potential and future prospect in Sudan. Renewable & Sustainable Energy Review 9: 1-27Biomass and biogas for energy generation: recent development and perspectivesAbdeen Mustafa Omer UON,

21、Forest Road West, Nottingham NG7 4EU, UKBiogas from biomass appears to have potential as an alternative energy source, which is potentially rich in biomass resources. This is an overview of some salient points and perspectives of biogas technology. The current literature is reviewed regarding the ec

22、ological, social, cultural and economic impacts of biogas technology. This article gives an overview of present and future use of bioma ss as an industrialfeedstock for production of fuels, chemicals and other materials. However, to be truly competitive in an open market situation, higher value prod

23、ucts are required. Results suggest that biogas technology must be encouraged, promoted, invested, implemented, and demonstrated, but especially in remote rural areas. Keywords: biomass resources, biogas application, sustainable development, environment. Energy is an essential factor in development s

24、ince it stimulates, and supports economic growth, and development. Fossil fuels, especially oil and natural gas, are finite in extent, and should be regards as depleting assets, and efforts are oriented to search for new sources of energy. The clamour all over the world for the need to conserve ener

25、gy and the environment hasintensified as traditional energy resources continue to dwindle whilst the environment becomes increasingly degraded. The basic form of biomass comes mainly from firewood, charcoal and crop residues. Out of the total fuel wood and charcoal supplies 92% was consumed in the h

26、ousehold sector with most of firewood consumption in rural areas.Combustion remains the method of choice for heat and power generation (using steam turbines) for dryer raw materials, while biogas production through anaerobic digestion or in landfills, is widely used for valorisation of wet residues

27、and liquid effluents for heat and power generation (using gas engines or gas turbines). In addition, some liquid fuel is produced from purpose grown crops (ethanol from sugarcane, sugar beet, maize, sorghum and wheat or vegetable oil esters from rapeseed, sunflower oil oilpalm). The use of wastes an

28、d residues has established these basic conversion technologies, although research, development and demonstration continues to try and improve the efficiency of thermal processing through gasification and pyrolysis, linked to combined cycle generation. At the same time considerable effort is being ma

29、de to increase the range of plant-derived non-food materials. To achieve this several approaches are being taken. The first is to provide lower cost raw materials for production of bulk chemicals and ingredients that can be used in detergents, plastics, inks, paints and other surface coatings. To a

30、large extent these are based on vegetable oils or starch hydrolysates used in fermentation to produced lactic acid (for polylactides) or polyhydroxbutyrate, as well as modified starches, cellulose and hemicellulose. The advantages are biodegradability, compatibility with biological systems (hence, l

31、ess allergic reaction in use) and sparing of fossil carbon dioxide emissions (linked to climate chance). Associating an economic value to these environmental benefits, linked to consumer preferences has contributed to increased production in this area. The second expanding activity is the use of pla

32、nt fibres, not only for non-tree paper, but also as a substitute for petroleum based plastic packing and components such as car parts. These may be derived from non-woven fibres, or be based on bio-composite materials (lingo -cellulose chips in a suitable plastic matrix). At the other end of the sca

33、le, new methods of gluing, strengthening, preserving and shaping wood have increased the building of large structures with predicted long-lifetimes. These include a wide range of natural products such as flavours, fragrances, hydrocolloids and biological control agents. In spite of decades of resear

34、ch and development, engineering (recombinant DNA technology) is being widely investigated to achieve this, as well as to introduce new routes to unusual fatty acids and other organic compounds. In addition such techniques are being used to construct plants that produce novel proteins and metabolites

35、 that may be used as vaccines or for other therapeutic use. Processing of the crops for all these non-food uses will again generate residues and by-products that can serve as a source of energy, for internal use in processing, or export to other users, suggesting the future possibility of large mult

36、i-product biomass-based industrial complexes.1Technical DescriptionBacteria form biogas during anaerobic fermentation of organic matters. The degradation is very complex process and requires certain environmental conditions as well as different bacteria populations. The complete anaerobic fermentati

37、on process is briefly described below as shown in Table 1, and Figure 1. Biogas is a relatively high-value fuel that is formed during anaerobic degradation of organic matter. The process has been known, and put to work in a number of different applications during the past 30 years, for rural needs s

38、uch as in 2: food security, water supply, health cares, education and communications. During the last decades thousands of biogas units were built all over the world, producing methane CH4 for cooking, water pumping and electricity generation. In order not to repeat successes in depth on local condi

39、tions and conscientious planning urged3. The goals should be achieved through: Review and exchange of information on computer models and manuals useful for economic evaluation of biogas from biomass energy. Exchange of information on methodologies for economic analysis and results from case studies.

40、 Investigation of the constraints on the implementation of the commercial supply of biogas energy. Investigation of the relations between supplies and demand for the feedstock from different industries. Documentation of the methods and principles for evaluation of indirect consequences such as effec

41、ts on growth, silvicultural treatment, and employment.Table (1) Anaerobic degradation of organic matter4LevelSubstanceMoleculeBacteriaInitialManure,vegetable,wastersCellulose,peoteinsCellulolytic,proteolyticIntermediateAcide,gases,oxidised,inorganic saltsCH3COOH,CHOOH,SO4,CO2,H2,NO3Acidogenic, hydro

42、genic, sulfatereducingFinalBiogas,reduced inorganic compoudsCH4,CO2,H2S,NH3,NH4Methane formersBiogas technology cannot only provide fuel, but is also important for comprehensive utilisation of biomass forestry, animal husbandry, fishery, agricultural economy, protecting the environment, realising ag

43、ricultural recycling, as well as improving the sanitary conditions, in rural areas. The introduction of biogas technology on wide scale has implications for macro planning such as the allocation of government investment and effects on the balance of payments. Factors that determine the rate of accep

44、tance of biogas plants, such as credit facilities and technical backup services, are likely to have to be planned as part of general macro-policy, as do the allocation of research and development funds5.Biogas is a generic te rm for gases generated from the decomposition of organic material. As the

45、material breaks down, methane (CH4) is produced as shown in Figure 3. Sources that generate biogas are numerous and varied. These include landfill sites, wastewater treatment plants and anaerobic digesters. Landfills and wastewater treatment plants emit biogas from decaying waste. To date, the waste

46、 industry has focused on controlling these emissions to our environment and in some cases, tapping this potential source of fuel to power gas turbines, thus generating electricity. The primary components of landfill gas are methane (CH4), carbon dioxide (CO2), and nitrogen (N2). The average concentr

47、ation of methane is 45%, CO2 is 36% and nitrogen is 18%. Other components in the gas are oxygen (O2), water vapour and trace amounts of a wide range of non-methane organic compounds (NMOCs)6For hot water and heating, renewables contributions come from biomass power and heat, geothermal direct heat,

48、ground source heat pumps, and rooftop solar hot water and space heating systems. Solar assisted cooling makes a very small but growing contribution. When it comes to the installation of large amounts of PV, the cities have several important factors in common. These factors include7:l A strong local

49、political commitment to the environment and sustainability. l The presence of municipal departments or offices dedicated tol the environment, sustainability or renewable energy. l Information provision about the possibilities of renewables. l Obligations that some or all buildings include renewable

50、energy.Biogas UtilisationIn the past two decades the world has become increasingly aware of the depletion of fossil fuel reserves and the indications of climatic changes based on carbon dioxide emissions. Therefore extending the use of renewable resources, efficient energy production and the reducti

51、on of energy consumption are the main goals to reach a sustainable energy supply. Renewable energy sources include water and wind power, solar and geothermal energy, as well as energy from biomass8. The tech nical achievability and the actual usage of these energy sources are different around Europe

52、, but biomass is seen to have a great potential in many of them. An efficient method for the conversion of biomass to energy, is the production of biogas by microbial degradation of organic matter under the absence of oxygen (anaerobic digestion). It is now possible to produce biogas at rural instal

53、lation, upgrade it to bio-methane, feed it into the gas grid, use it in a heat demand-controlled CHP and to receive revenues.Biogas is a mixture containing predominantly methane (50-65% by volume) and carbon dioxide and in a natural setting it is formed in swamps and anaerobic sediments9, etc., due

54、to its high methane concentration, biogas is a valuable fuel. Wet (40-95%) organic materials with low lignin and cellulose content are generally suitable for anaerobic digestion (Figure 3). A key concern is that treatment of sludge tends to concentrate heavy metals, poorly biodegradable trace organi

55、c compounds and potentially pathogenic organisms (viruses,bacteria and the like) present in wastewaters.These materials can pose a serious threat to the environment. When deposited in soils, heavy metals are passed through the food chain, first entering crops, and then animals that feed on the crops

56、 and eventually human beings, to whom they appear to be highly toxic. In addition they also leach from soils, getting into groundwater and further spreading contamination in an uncontrolled manner. European and American markets aiming to transform various organic wastes (animal farm wastes, industri

57、al and municipal wastes) into two main by-products11:n A solution of humic substances (a liquid oxidate). n A solid residue.Ecological Advantages of Biogas Technology An easier situation can be found when looking at the ecological effects of different biogas utilisation pathways. The key assumptions

58、 for the comparison of different biogas utilisation processes are: u Biogas utilisation in heat demand controlled gas engine supplied out of the natural gas grid with 500 kWe - electrical efficiency of 37.5%, thermalefficiency of 42.5%, and a methane loss of 0.01. u Biogas utilisation in a local gas engine, installed at the biogas plant with 500 kWe - electrical efficiency of 37.5%, thermal efficiency of 42.5%, and a methane loss of 0.5.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论