




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、运筹学 - 大 M 法或两阶段法的上 机实验实验报告实验课程名称 运 筹 学实验项目名称 大 M法或两阶段法的上机实验年级专业学生姓名学号00 学 院实验时间:实验项目名称大 M法或两阶段法的上机实验姓学实 验名号组实 时验 间指 导 教 师成 绩实验目的及要求 :实验目的:1. 学会用 Tora 软件或 Lindo 软件求解线性规划问题,2. 理解每一步迭代计算中进基与出基变量等,了解大 M 法或两段法的上机实验。 实验要求:完成作业 P97页第 6 题及第 7 题(4)。实验(或算法)原理:1. 大 M法思路: 在单纯形法的基础上,为了使解线性规划有一个统一的解法,我们把所有求目标函 数最
2、小值的问题化为求目标函数最大值的问题。 只要把目标函数乘以 -1 ,就可以把原来 求目标函数最小值的问题化为求目标函数最大值问题。 为了找到一个满足条件的单位向 量(非负),就需要加人工变量,注意人工变量与松弛变量和剩余变量是不同的,松弛 变量和人工变量可以取零值也可以取正值, 而人工变量只可以取零值, 否则就会不等价。 我们规定人工变量在目标函数中的系数为 -M,M为任意大的数,这样只要人工变量大于 零,所求的目标函数就是一个任意小的数,为了使目标函数最大,就必须将人工变量从 基变量中换出。如果一直到最后,人工变量仍不能从基变量中换出,也就是说人工变量 仍不为零,则该问题无可行解。像这样,为
3、了构造初始可行基得到初始可行解,把人工 变量”强行”的加到原来的约束方程中去,又为了尽力地把人工变量从基变量中替换出 来就令人工变量在求最大的目标函数里的系数为 -M 的方法叫做大 M法,M叫做罚因子。2. 两阶段法原理:两阶段法是处理人工变量的另一种方法, 这种方法是将加入人工变量后的线性规划 问题分两阶段求解。第一阶段:要判断原线性规划问题是否有基本可行解,保持线性规 划问题的约束条件原线性规划问题一样,而目标是求人工变量的相反数之和的最大值, 如果此值大于零,即说明不存在使所有人工变量都为零的可行解,即原问题无可行解, 因停止计算。如果此值为零,即说明存在一个可行解使得所有的人工变量都为
4、零。第二 阶段:将第一阶段的最终单纯形表中的人工变量(都是非基变量)取消,将目标函数换 为原来的目标函数, 把此可行解作为初始解进行计算, 接下来的计算和单纯形法计算原 理是一样的。实验硬件及软件平台 :PC 机, Tora 软件, Internet 网。实验步骤 :大 M法步骤:1. 打开 TORA命令窗口;2. 选择 Linear programming-Select input mode-Go to input screen;3. 输入待解的方程组 - Slolve menu -Solve problem-Algebraic-Iterations-M-method-输入值 - 点击 Go
5、 To Output Format Screen- 点击 Go To Output Screen- 点击 All lterations。4. 得出运行结果。5. 改变 3 步骤中的值(例 100 改为 100000),再按之后的步骤运行,得出结果。6. 观察对比结果。 两阶段法步骤:1)打开 TORA命令窗口;2)选择 Linear programming-Select input mode-Go to input screen;3)输入待解的方程组 - Slolve menu -Solve problem-Algebraic-Iterations-Two-phase method- 点击 G
6、o To Output Format Screen- 点击 All lterations ;4)得出运行结果。实验内容(包括实验具体内容、 算法分析、 源代码等等):1.书上 P97页第 6题:用大 M法和两阶段法求解下列线性规划问题。max z=5x1 x 2 3x3;约束条件: x1 4x 2 2x3 10 ,x1 -2x2 x3 16.A:大 M法图 1.1由上面的结果可知,x3=0,sx4=16,Rx5=0,的,这样就可以得出当图 1.2满足所求出的 j 0 ,得出目标函数的最优解 x1=16,x2=0, sx=0,最优值是 80。当把 M的值改为 100000 后,值还是一样 M为
7、100 时,已经得出有效解。B:两阶段法6图 2.1图 2.2由上面的图 2.1 可知,首先先输入数据即线性规划的系数如图 2.1 所示令 max z=2x1 x 2 x3-0sx4+0sx6+0sx7-MRx5; 进行下一次迭代,以同样的方法一直下去,直 到所求出的 j 0为止 ,就可以得出目标函数的最优解: x1=4, sx4=12,sx6=12,其余 为 0 时,最优值为 8 。当把 M的值改为 100000 后,值还是一样的,这样就可以得出当 M 为 100 时,已经得出有效解。B:两阶段法图 2.39由图 2.3 可知,先进行线性规划的第一阶段, z=0x1+0x2+0x3+0sx4
8、-Rx5+0sx6, 通 过迭代,满足 j 0,且 z值为零,即说明存在一个可行解使得所有的人工变量都为零, 此时 x1=1,sx6=18, sx7=12,其余为 0,得出 z=0。接下来进行第二阶段,令 z=2x1+x2+1x3+0sx4+0Rx5+0sx6+0sx7,和大 M 的分析方法一样, 最终将得到满足 j 0 时达到最优解:当 x1=4,x2=0,x3=0,sx4=12,Rx5=0,sx6=12,最优值为 8。10实验结果与讨论 :1. 首先找出一个初始基本可行解,然后进行最优性检验,基变化的步骤,最后得到 结果。同时学会了用 Tora 软件求解线性规划问题,并在求解过程中学会理解每一步迭 代计算中进基与出基变量。2. 为了构造初始可行基得到初始可行解, 把人工变量”强行” 的加到原来的约束方程 中去,又为了尽力地把人工变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司转供电合同标准文本
- 代加工小米合同标准文本
- 代理售房定金合同标准文本
- 个人商铺合同标准文本
- 买卖猪合同标准文本
- 主播俱乐部合同标准文本
- 个人咨询中介合同标准文本
- 使用物质合同样本
- 全程土地托管合同样本
- 产品打样合同样本
- 联社监事长整改措施
- 冠心病健康教育完整版
- 《中原文化》课件
- 2021年新高考英语读后续写母亲节课件高考英语一轮复习
- 竖井施工安全问题与预防措施
- 中国特色社会主义理论体系的形成发展PPT2023版毛泽东思想和中国特色社会主义理论体系概论课件
- 四渡赤水-课件
- 冷鲜肉猪肉白条分割技术详细结构图及产品部位介绍和用途
- 员工质量意识培训PPT
- 2024年高中语文会考试题及答案
- 中考小说阅读解题技巧公开课一等奖市赛课获奖课件
评论
0/150
提交评论