版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第5章-151-53结构计算基本假设与 整体墙和联肢墙 第5章 框架、剪力墙、框架剪力墙结构的 近似计算方法与设计概念 第5章-151-53结构计算基本假设与 整体墙和联肢墙 本章讲授内容剪力墙的计算 5.1 计算基本假定(通用于各类手工计算) 5.3 剪力墙结构的近似计算方法 w剪力墙的分类(复习) w剪力墙的计算简图 w5.3.2 整体墙的近似计算要点 w5.3.3 连续化方法计算多肢墙 剪力墙内力和变形特征与各种参数 注:本章与8.3和抗震结构结合讲解 注2:剪力墙的设计在第7章 第5章-151-53结构计算基本假设与 整体墙和联肢墙 5.1 计算基本假定 1、平面结构假设:一榀框架和一
2、片剪力墙在 其自身平面外的刚度为零 2、楼板平面内无限刚性假设:楼板平面内刚 度无穷大,平面外刚度为零。 在以上基本简化假定之下,不考虑结构扭转时, 称为平面协同计算(此时,正交方向的抗侧单 元不参加工作)。 考虑扭转时称为空间协同计算(此时,正交方 向的抗侧力结构结构参加抵抗扭矩)。 第5章-151-53结构计算基本假设与 整体墙和联肢墙 1 1、关于平面结构假设、关于平面结构假设 任何一个建筑物都是空间结构,都应该能承受来自不同 方向的力的作用,因此每个构件都与不在同一平面内的 其它构件相联系,形成三维传力体系。但是,经常将结 构简化为平面结构分析,平面结构是一种简化假定,假 定结构只能在
3、它自身平面内具有有限刚度。 平面框架、剪力墙、只能抵抗平面内的作用力。在平面 外刚度为零,也不产生平面外的内力。因此杆件每一个 结点具有的三个自由度。 多数结构符合这些条件,但是有一些结构必需考虑与平 面外有相互传力关系,例如框筒的角柱、空间框架、空 间桁架等,则必须按空间杆件计算,计算时每个结点具 有六个自由度(在三维平面中)。 第5章-151-53结构计算基本假设与 整体墙和联肢墙 2 2、关于楼板平面内无限刚性假定、关于楼板平面内无限刚性假定 大多数情况下,都可假定楼板在其自身平面 内无限刚性(不变形),在平面外则刚度为零。 根据这个假定,楼板经常作为若干个平面结 构之间的联系,使这些平
4、面结构在水平荷载 作用下同一楼层处的侧移都相等(无扭转时), 或侧移分布成直线关系(有扭转时) 。楼板 的这种作用称为“水平位移协调“ 注意:这些平面结构的竖向变形独立,互不 相关。 第5章-151-53结构计算基本假设与 整体墙和联肢墙 楼板平面内无限刚性的适用条件楼板平面内无限刚性的适用条件 楼板是保证协同工作的重要构件,当采用基本简化假定(2) 时,应确定楼板在其自身平面内确有足够大的刚度。以下 情况按无限刚性假定计算所得结果与实际情况不符 n当楼板长宽比较大; n或者局部楼板长宽比较大, n局部外伸的楼板较细长或楼板开大孔,在水平荷载下楼板会有较大 变形。 这种情况下规范规定要考虑楼板
5、的有限刚性结构分析。这 种分析会增加计算自由度,目前只有很少的程序可做这种 计算,一般情况下应避免设计这种结构; 在框架-剪力墙结构中要限制剪力墙的间距,就是为了减少 楼板的水平变形。当楼板变形情况不严重时可在按刚性楼 板计算的基础上对内力进行适当调整,并采取相应构造措 施。 第5章-151-53结构计算基本假设与 整体墙和联肢墙 1、根据动力计算模型得到每层的外力 2、各片墙承受的外力按刚度分配 3、按2的结果分片计算各墙的内力。 n各片墙内力之和就是层间剪力上部全部外力之和。 n计算内容包括:各墙肢的弯矩、剪力和轴力。 5.3 剪力墙结构的近似计算方法 H1 G1 Gk Hk n F 1
6、F k F Eknn FF 第5章-151-53结构计算基本假设与 整体墙和联肢墙 )155( pi eqjc eqjc ij V IE IE V 水平荷载向各片剪力墙的分配 不考虑扭转时,按等效抗弯刚度分配剪力 第i层第j片墙的剪力 第i层的总剪力 第i层的所有墙的 等效抗弯刚度和 第j片墙的等效抗弯刚度 第5章-151-53结构计算基本假设与 整体墙和联肢墙 可可简化为平面计算的剪力墙分类简化为平面计算的剪力墙分类 局部弯矩 整体弯矩 随着开口的增加,变形逐渐由 弯曲型过渡到剪切型 洞口不规则墙不能简化为杆件 体系进行计算 壁式框架 第5章-151-53结构计算基本假设与 整体墙和联肢墙
7、剪力墙的计算模型-联肢墙和壁式框架 第5章-151-53结构计算基本假设与 整体墙和联肢墙 剪力墙结构简化为平面结构计算 简化假设: 1.忽略剪力墙在其 自身平面外的刚度 2.楼板在自身平面 内视为刚度无穷大 3. 纵墙作为横墙的 有效翼缘(横墙作为 纵墙的有效翼缘) 忽略这部分 墙的承载力 只考虑这部 分的承载力 第5章-151-53结构计算基本假设与 整体墙和联肢墙 现浇剪力墙翼缘宽度的选取 按三种情况的 最小值取用 第5章-151-53结构计算基本假设与 整体墙和联肢墙 5.3.2 整体墙的近似计算要点 (含小开口整体墙计算) 截面内力:直接采用静力学获得(剪力墙作为 悬臂梁是静定结构)
8、 顶点位移:需要计算刚度 n无开口:直接采用深梁理论获得 n有开口:用折算惯性矩考虑开口影响,然后 采用深梁理论获得 截面应力:需要深梁理论比较复杂的公式。设 计中不使用,教材中没有。只在折算惯性矩 中引入了剪应力不均匀系数。 第5章-151-53结构计算基本假设与 整体墙和联肢墙 计算原理:整体墙看成悬臂梁,是一个静定结 构。可以采用材力(高等材力)的方法直接计算 弯矩和剪力。 有开口时,通过对面积和惯性矩进行折减后, 仍按类似无开口的悬臂梁,采用深梁公式计算 墙的顶点位移和内力。 整体墙的折算截面面积 第5章-151-53结构计算基本假设与 整体墙和联肢墙 竖向各段的截面惯性矩计算 墙沿高
9、度按开口分成若干段hi 对有洞口段和无洞口段分别计算惯性矩 如果hi =H/n,则Iq= Ii /n (算术平均) 注意: n墙的厚度是悬臂梁的宽度 n墙的宽度是悬臂梁的高度 n悬臂梁的截面可能是工字形或槽形的 加权平均 第5章-151-53结构计算基本假设与 整体墙和联肢墙 两个自由度梁(深梁)理论要点 基本假设:垂直于中线的截面变形以后仍为平 面,但是不再垂直于中线。 考虑了剪切变形的影响以后,转角和挠度之间 不再具有相关性,转角成了一个独立变量。 长梁理论实际上是假设剪切刚度为无穷大,所 以其中尽管有剪力,但没有剪切变形。这里要 考虑有限的剪切刚度,因而考虑了剪切变形的 影响。 教材中:
10、剪力墙高度H/截面高度hw4时需考虑 剪切变形影响。此处的截面高度实际上是墙肢 长度。 第5章-151-53结构计算基本假设与 整体墙和联肢墙 等效抗弯刚度 等效刚度是在考虑剪切变形梁的计算公式中,为方便 起见设置的一个参数。 它把剪切变形和弯曲变形综合成弯曲变形的形式表达。 采用等效刚度后,梁位移的计算公式与不考虑剪切变 形的梁的计算公式形式上相同。 已知层间剪力后,墙中的弯矩和剪力可根据静力学很 容易求得。 对于不同荷载等效抗弯刚度中的系数略有不同:倒三 角形荷载(3.64)、均布荷载(4)和顶部集中(3)荷载。 3, 4,64. 3 1 2 b GAH EI b EI EI q q q
11、eq 3 1 , 8 1 , 60 11 3 0 a EI HV a eq 第5章-151-53结构计算基本假设与 整体墙和联肢墙 深梁剪应力不均匀系数:(P.109) 矩形截面时:1.2 I形截面时: =全面积/腹板面积 T形截面时: 见下表 翼缘宽度 截面高度 剪力墙厚度 第5章-151-53结构计算基本假设与 整体墙和联肢墙 已知底部截面总剪力V0 按普通梁公式计算正应力和剪应力 按悬臂梁(深梁)公式计算顶点位移 如果有开口则对面积和惯性矩进行折减 整体墙的顶部位移近似计算 注意与截面 形状有关 注意此处是11 而不是1 (顶部集中力) (均布荷载) (倒三角荷载) .). 3 1 (
12、3 1 .). 4 1 ( 8 1 .). 64. 3 1 ( 60 11 2 3 0 2 3 0 2 3 0 q q q q q q q q q GAH EI EI HV GAH EI EI HV GAH EI EI HV 基底总剪力,即 全部水平力之和 第5章-151-53结构计算基本假设与 整体墙和联肢墙 双肢墙内力 )335(2)( 21 cNMMM p 高度处外力作用下的倾覆弯矩(简单静力求解): 水平荷载产生的两 墙肢轴力方向相反 Mp可通过简单静力求解得到,需求内力M1 M2 V1 V2N1N2 如果能够求得连梁内力,则墙肢内力也就可以得到了 第5章-151-53结构计算基本假设
13、与 整体墙和联肢墙 5.3.3 连续化方法计算多肢墙 (求水平力作用下的内力和位移)P.105 基本假定 n楼盖平面内刚度无穷大 n连梁连续化假定 n连梁反弯点位于跨中 n构件沿竖向分布均匀 方法连续化连梁成连续连杆得到关于参数的微分方 程,求解得到(它与连梁剪应力有简单的关系) 已知剪力墙尺寸、底部剪力V0,倾覆弯矩Mp。查表得 到轴向变形影响系数T ,计算整体系数 结果墙肢弯矩、轴力、剪力;连梁弯矩、剪力;顶部 位移。 )( )()( )285()()1 ()()( pj i i i ii pi p i i p i i V I I V I yA kMN M I I kM I I kM 第5
14、章-151-53结构计算基本假设与 整体墙和联肢墙 连续化方法的基本思想 连续杆法计算联肢墙的基本思想 n(1)把连梁看成均匀分布的连续连杆。 n(2)剪力墙从和连梁处切断;以切口处的剪力为未知量。 n(3)建立切口处连杆位移与剪力的关系。 n(4)用切口处连杆的位移协调,建立微分方程求解。 连续连杆 )225()( 2 )( 0 c T V 切口处存在轴力和剪力 剪力为基本未知量 连杆剪力 剪力墙 底部剪力 轴向变形 影响系数 第5章-151-53结构计算基本假设与 整体墙和联肢墙 阅读材料连续连杆法的假定 1、将在每一楼层处的连梁离散为均布在整个层高范围内 的连续化连杆。这样就把有限点的连
15、接问题变成了连续 的无限点连接问题。剪力墙越高,这一假设对计算结果 的影响就越小。 2、连梁的轴向变形忽略不计。连梁在实际结构中的轴向 变形一般很小,忽略不计对计算结果影响不大。在这一 假定下,楼层同一高度处两个墙肢的水平位移将保持一 致,使计算工作大为简化。 3、假定在同一高度处,两个墙肢的截面转角和曲率相等 按照这一假定,连杆的两端转角相等,反弯点在连杆的 中点。 4、各墙肢、连梁的截面尺寸、材料等级及层高沿剪力墙 全高都是相同的。 第5章-151-53结构计算基本假设与 整体墙和联肢墙 阅读材料连续连杆法的适用范围 由连续连杆法的假设可见,该法适用于: 1、开洞规则、高度较大的联肢墙。剪
16、力墙越 高,计算结果越准确;对低层、多层建筑中的 剪力墙,计算误差较大。 2、由上到下墙厚、材料及层高都不变的联肢 剪力墙。对于墙肢、连梁截面尺寸、材料等级、 层高有变化的剪力墙,如果变化不大,可以取 平均值进行计算;如果变化较大,则本方法不 适用。 第5章-151-53结构计算基本假设与 整体墙和联肢墙 墙肢弯曲 墙肢压缩 连梁弯曲 基本方程 整体系数 3、切口处的变形连续条件 1、切口处垂直位移分成三部分: (a)由墙肢弯曲引起1; (b)墙肢轴向变形引起2; (c)连梁弯曲和剪切变形引起3; 2、切口处连杆位移与剪力关系: (5-19a,b,c)由于位移为中间变量, 这些公式只在理论推导
17、时有用。 (顶部集中力)(顶部集中力) (均布荷载)(均布荷载) (倒三角荷载)(倒三角荷载) . . .)1(1 )()( 2 2 22 2 2 2 1 0 )()( Vxm )225()( 2 )( 0 c T V 方程的推导过程 第5章-151-53结构计算基本假设与 整体墙和联肢墙 连续连杆法基本方程求解 用边界条件确定待定常数得到方程的解答 解答表现为通解+特解(与荷载形式有关) 基本方程的通解 待定常数(由边界条件确定) 方程的最终结果 多肢墙的结果与此相同 相对坐标0,1 第5章-151-53结构计算基本假设与 整体墙和联肢墙 多肢墙微分方程的解答 多肢墙的计算归结为计算连杆约束
18、弯矩m或剪力 计算归结为计算整体系数: m =2c 约束弯矩和 剪力的关系 第5章-151-53结构计算基本假设与 整体墙和联肢墙 整体系数: 整体系数用连梁和墙肢刚度的相对比例关系 剪力墙整体(整体、小开口、联肢)程度主要取决于连梁 与墙肢刚度之间的相对大小。 整体性:连梁和墙肢所构成的构件是否一道(独立)工作。 大时,连梁刚度相对大,对墙肢约束也大、整体性强。 小时,连梁刚度相对小,对墙肢约束也小、整体性差。 整体系数是剪力墙的分类标准之一(非独立、非唯一): n1:联肢墙。需要考虑连梁的约束。 n10:整体小开口墙。连梁约束强,但墙肢也强。 n10(IA/IZ):壁式框架,由于墙肢弱,导
19、致连梁约 束相对强。墙肢变成了框架柱,连梁类似框架梁(洞 口很大,但梁柱刚度比也大时,也会比较大,结构的整体性比 较强,此时,当做壁式框架)这时仍然认为整体性很强。 )255( 6 21 3 22 2 a II I a c Th H l 连梁折算惯性矩 墙肢惯性矩 第5章-151-53结构计算基本假设与 整体墙和联肢墙 各种类型剪力墙汇总对比 Z通过查表获得(有些书中用表示) 整截面墙和整体小开口墙材料力学方法 联肢墙(双肢墙)连续化方法 壁式框架带刚域D值法 第5章-151-53结构计算基本假设与 整体墙和联肢墙 双肢墙位移、内力沿高度分布: 随增加,各量按箭头方向变化。图(5-24) 总位
20、移和墙肢弯矩随增加而减小、 连梁剪力和墙肢轴力随增加而增加。 第5章-151-53结构计算基本假设与 整体墙和联肢墙 利用(5-27)和(5-28)计算剪力墙的内力 再用(5-31)计算顶点位移 内力和位移计算公式汇总 aVM c TV hhV bjlj lj )275()( 2 )()( 0 I yA kMN M I I kM I I kM ii pi p i i p i i )()( )285()()1 ()()( (顶部集中力) (均布荷载) (倒三角荷载) . 3 1 . 8 1 . 60 11 3 0 3 0 3 0 eq eq eq EI HV EI HV EI HV 第j层连梁内
21、力(设计用) 墙肢内力(设计用) 联肢墙的等效抗弯 刚度用(5-32)计算 顶点位移(设计用) 3, 4,64. 3 1 2 b GAH EI b EI EI q q q eq )225()( 2 )( 0 c T V 第5章-151-53结构计算基本假设与 整体墙和联肢墙 墙肢内力计算公式 )( )()( )285()()1 ()()( pj i i i ii pi p i i p i i V I I V I yA kMN M I I kM I I kM 墙肢内力都是沿着高度变化的。 墙肢内弯矩整体弯矩局部弯矩 系数k体现的整体弯矩和局部弯矩的相对大小(3-29) k =1时,墙肢弯矩完全是
22、整体弯矩。 k =0时,墙肢弯矩完全是局部弯矩(两个独立的墙肢)。 k的值与:荷载分布形式,高度,整体系数有关 小开口整体墙:直接取k=0.85进行计算(与高度无关)。 联肢墙:k与高度有关,计算公式比较复杂: 外荷载产生的倾覆力矩 (注意它与高度有关) 此项对应局部弯矩 第5章-151-53结构计算基本假设与 整体墙和联肢墙 整体弯矩和局部弯矩 墙肢内弯矩整体弯矩局部弯矩 越大,连梁的约束越强,整体弯矩所占比例越大 局部弯矩 整体弯矩 第5章-151-53结构计算基本假设与 整体墙和联肢墙 各种墙中弯矩沿高度分布 连梁的约束导致 墙中弯矩沿高度 方向突变(锯齿)。 随着连梁约束的 加强,整体
23、弯曲 的比重越来越大 连梁和墙的刚度 差异不大时,墙 中会偶尔出现反 弯点 纯局部弯曲 纯整体弯曲 整体局部弯曲 柱中存在反弯点 锯齿 第5章-151-53结构计算基本假设与 整体墙和联肢墙 关于k k是相对高度和整体系数的函数:公式(5-29) k反应了整体弯矩和局部弯矩的比例。 k大则整体弯矩大。 k与的关系: 较小时, k随的变化较大两类弯矩比例沿高度变化较大。 大于10以后, k的数值接近1,沿高度各截面均以整体弯矩为主,差异不大。 k值沿高度变化 联肢墙k数值 需要通过比较复 杂的计算得到。 如果为整体小 开口墙,则直 接取k =0.85不 需另外计算。 I yA kMN M I I
24、 kM I I kM ii pi p i i p i i )()( )285()()1 ()()( 第5章-151-53结构计算基本假设与 整体墙和联肢墙 墙肢的剪力 )( pj i i ij V I I V 联肢墙 对比:整体小开口墙 )( 2 1 pj i i i i ij V I I A A V 2 12 1 hGA EI I I i i i i 墙肢考虑剪切变 后的折算惯性矩 第j层第i墙肢剪力 第j层总剪力 第5章-151-53结构计算基本假设与 整体墙和联肢墙 连梁内力计算公式 )( 2 )275()( 2 )()( 0 0 c TV haaVM c TV hhV ljlj lj
25、第j层连梁内力(设计用) 底部剪力 层高 相邻两墙肢轴线的距离 轴向变形影响系数 连梁剪力 梁端弯矩 上式中下标l表示梁。规范中用b表示。 j表示层号。 注意: 连梁的剪力与高度有关,但在连梁内部则不变 连梁弯矩沿联梁是变的,上式求得的是梁端弯矩 连梁跨度=2a 第5章-151-53结构计算基本假设与 整体墙和联肢墙 补充材料连续连杆法的假定 1、将在每一楼层处的连梁离散为均布在整个层高范围内 的连续化连杆。这样就把有限点的连接问题变成了连续 的无限点连接问题。剪力墙越高,这一假设对计算结果 的影响就越小。 2、连梁的轴向变形忽略不计。连梁在实际结构中的轴向 变形一般很小,忽略不计对计算结果影
26、响不大。在这一 假定下,楼层同一高度处两个墙肢的水平位移将保持一 致,使计算工作大为简化。 3、假定在同一高度处,两个墙肢的截面转角和曲率相等 按照这一假定,连杆的两端转角相等,反弯点在连杆的 中点。 4、各墙肢、连梁的截面尺寸、材料等级及层高沿剪力墙 全高都是相同的。 第5章-151-53结构计算基本假设与 整体墙和联肢墙 补充材料连续连杆法的适用范围 由连续连杆法的假设可见,该法适用于: 1、开洞规则、高度较大的联肢墙。剪力墙越 高,计算结果越准确;对低层、多层建筑中的 剪力墙,计算误差较大。 2、由上到下墙厚、材料及层高都不变的联肢 剪力墙。对于墙肢、连梁截面尺寸、材料等级、 层高有变化
27、的剪力墙,如果变化不大,可以取 平均值进行计算;如果变化较大,则本方法不 适用。 第5章-151-53结构计算基本假设与 整体墙和联肢墙 几何特性和各种参数的计算(双肢墙) (1) 墙肢墙肢 第i墙肢面积:Ai (墙肢是不开口的,其面积容易计算) 第i墙肢对自身形心的惯性矩:Ii。 第i墙肢形心到组合截面形心的距离:yi。 剪力墙整体对组合截面形心的惯性矩:I 2 22 2 1121 2 22 2 11 , yAyAIII yAyAI I I T A A (2) 连梁连梁 连梁计算跨度; al 连梁惯性矩:Il。 2 2 7 . 01 l l l l a h I I (3) 各种参数各种参数
28、整体性系数: 墙肢轴向变形影响系数:T 墙肢剪切变形影响系数: 连梁剪力不均匀系数查表 1.系数k(5-29)和a(5-30b) 1 1 2 1 1 2 s i i i s i i A GH IE 第5章-151-53结构计算基本假设与 整体墙和联肢墙 连梁折算惯性矩: 2c a al 连梁计算中的几个重要尺寸 连梁惯性矩 连梁的计算跨度 2al=2a+2/(4hl) 第5章-151-53结构计算基本假设与 整体墙和联肢墙 轴向变形对内力和位移的影响 多层结构各种荷载效应互不影响,高层中轴向变形对水 平荷载引起的内力和位移都有影响。 层数越多、轴向变形影响越大。 轴向变形的影响比剪切变形影响要
29、大。 第5章-151-53结构计算基本假设与 整体墙和联肢墙 组合截面总惯性矩: I:组合截面总惯性矩剪力墙对组合截面形心轴。 Ii:各墙肢对自身形心轴的惯性矩 由y1,y2两墙肢形心到组合界面形心的距离 直接采用上面的公式计算即可( P.112 ) 2 22 2 1121 1 1 2 1 1 1 1 2 1 1 , yAyAIII yAII yAIII I I T s i ii s i i s i ii s i iA A 双肢墙用 (见P.112) 第5章-151-53结构计算基本假设与 整体墙和联肢墙 双肢墙位移、内力沿高度分布: 连梁剪力 (减小) 水平位移 (增加) 墙肢轴力 (减小)
30、 墙肢弯矩 只考虑弯矩 考虑弯曲和轴向轴向变形 考虑弯曲、轴向 和剪切剪切变形 第5章-151-53结构计算基本假设与 整体墙和联肢墙 轴向变形影响系数T(5-23): 2 22 2 1121 1 1 2 1 1 1 1 2 1 1 , yAyAIII yAII yAIII I I T s i ii s i i s i ii s i iA A 双肢墙用 (见P.112) T1时,墙肢的刚度相对连梁小,或者说墙变软了。 墙肢较多时,可以查表 不考虑轴力影响时T=1 多肢墙可查表 第5章-151-53结构计算基本假设与 整体墙和联肢墙 墙肢的剪切(变形)影响系数 (5-30b) 剪力影响系数考虑深
31、梁剪切变形的影响。 墙的H/B4时,该值在10以内,可忽略。 忽略剪切变形影响时,=0 剪切变形对双肢墙影响小、对多肢墙影响较大 轴向变形的影响大于剪切变形影响. 1 1 2 1 1 2 k i i i k i i A GH IE 第i墙肢的剪力不均匀系数 第i墙肢惯性矩 总高度 第i墙肢截面积 第5章-151-53结构计算基本假设与 整体墙和联肢墙 a的数值 第5章-151-53结构计算基本假设与 整体墙和联肢墙 计算顶点位移 求出连梁剪力与弯矩以后可以比较容易地求出剪 力墙中的轴力、弯矩、剪力和位移。 (顶部集中力) (均布荷载) (倒三角荷载) . 3 1 . 8 1 . 60 11 3
32、 0 3 0 3 0 eq eq eq EI HV EI HV EI HV 墙肢等效刚度 底部剪力 TT EI EI a q eq 2 64. 31 第5章-151-53结构计算基本假设与 整体墙和联肢墙 剪力墙内力位移计算小结 高层墙肢和连梁都是深梁。 n弯曲变形影响:主要部分 n轴向变形影响:次要部分,不可忽略。 n剪切变形影响:最次要部分,刚度变小,变形增加。 有开口的剪力墙段中弯矩受开口的影响 n同一高度上:弯矩=整体弯矩+局部弯矩。 n不同高度上:下大上小,连梁处有折线。底部为控制 截面(控制截面上方有两层为底部加强区)。 n三个系数度量:k,T, 第5章-151-53结构计算基本假
33、设与 整体墙和联肢墙 多肢墙计算例题 墙厚度估计为0.16m 第5章-151-53结构计算基本假设与 整体墙和联肢墙 例题 双肢墙 11层 第5章-151-53结构计算基本假设与 整体墙和联肢墙 例题 连梁折 算惯性 矩 G=0.42E 第5章-151-53结构计算基本假设与 整体墙和联肢墙 例题 墙肢折算 惯性矩 它考虑了 剪切变形 的影响 第5章-151-53结构计算基本假设与 整体墙和联肢墙 例题 3.325 第5章-151-53结构计算基本假设与 整体墙和联肢墙 例题 需查表 第5章-151-53结构计算基本假设与 整体墙和联肢墙 例题计算连梁和墙肢的内力 第5章-151-53结构计算基本假设与 整体墙和联肢墙 例题计算结果 三个墙肢在底部的弯矩剪力大小均随刚度递增,虽不成正比但相差不多。 三个墙肢的惯性矩刚度分别为0.866,0.552,0.0032m4 前两个墙肢弯矩比为:1060/680=1.558(惯性矩比0.866/0.552=1.569) 第5章-151-53结构计算基本假设与 整体墙和联肢墙 整体小开口剪力墙的计算 整体弯矩和局部弯矩的叠加 整体弯曲把整体
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水资源循环利用100吨每小时气浮机方案
- 餐饮行业陪餐制度的法律责任
- 虚拟现实技术展厅方案
- 公共场所体育设施使用规范
- 茶艺师招聘笔试题及解答2025年
- 生活垃圾资源化利用管理制度
- 建筑施工项目全面质量管理和质量控制探析
- 政府机构人力资源审计方案
- 造纸厂客户服务管理规章制度
- 职业病防治工作计划和实施方案
- 小学英语-There is an old building in my school教学设计学情分析教材分析课后反思
- 《寒号鸟》说课课件
- GB/T 16935.1-2023低压供电系统内设备的绝缘配合第1部分:原理、要求和试验
- 临床微生物学检验:实验八 肠道杆菌的检验(三)
- 23秋国家开放大学《学前教育科研方法》形考作业1-3+终考作业参考答案
- 义务教育语文“思辨性阅读与表达”学习任务群教学策略
- 新时代科学家精神(2023春)学习通超星课后章节答案期末考试题库2023年
- 中考英语命题分析课件
- 大学物理(本科理工科非物理专业)PPT完整全套教学课件
- 注塑工艺卡片
- 2023年高考模拟三元思辨作文“拿得起、放得下、想得开”讲评课件
评论
0/150
提交评论