版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、计算方法课程教学大纲课程编号:学时:54 学分:3适用对象:教育技术学专业先修课程:高等数学、线性代数考核方式:本课程考试以笔试为主70%,兼顾学生的平时成绩30%。使用教材及主要参考书:使用教材:李庆扬.数值分析(第四版), 清华大学出版,2014年。主要参考书:1. 朱建新,李有法.高等学校教材:数值计算方法(第3版),高等教育出版社,2012。2. 徐萃薇,孙绳武.计算方法引论(第4版),高等教育出版社,2015。一 课程的性质和任务计算方法是教育技术学专业学生的一门专业选修课。作为计算数学的一个重要分支,它是数学科学与计算机技术结合的一门应用性很强的学科,本课程重点介绍计算机上常用的基
2、本计算方法的原理和使用;同时对计算方法作适当的分析。教学任务:通过本课程的学习,要使学生具有现代数学的观点和方法,并初步掌握处理计算机常用数值分析的构造思想和计算方法。同时,也要培养学生抽象思维和慎密概括的能力,使学生具有良好的开拓专业理论的素质和使用所学知识分析和解决实际问题的能力。二 教学目的与要求教学目的:通过学习使学生了解数值计算方法的基本原理。了解计算机与数学结合的作用及课程的应用性。为今后使用计算机解决实际问题中的数值计算问题打下基础。通过理论教学达到如下基本要求。1了解误差的概念2掌握常用的解非线性方程根的方法3熟练掌握线性代数方法组的解法4熟练掌握插值与拟合的常用方法5掌握数值
3、积分方法6了解常微分方程初值问题的数值方法三 学时分配序号章节课程内容学时1第一章绪论42第二章插值法103第三章曲线拟合与最小二乘法44第四章数值积分与数值微分105第五章线性方程组的直接方法86第六章解线性方程组的迭代法47第七章非线性方程求解108第八章常微分方程数值解法4合计54四 教学中应注意的问题本课程是一门理论性较强、内容较抽象的综合课程,因此面授辅导或自学,将是不可缺少的辅助教学手段,教师在教学的过程中一定要注意理论结合实际,课堂教学并辅助上机实验,必须通过做练习题和上机实践来加深对概念的理解和掌握,熟悉公式的运用,从而达到消化、掌握所学知识的目的。同时应注重面授辅导或答疑,及
4、时解答学生的疑难问题。五 教学内容第1章 绪论(误差)基本内容: 第一节 数值分析研究的对象和特点第二节 数值计算的误差1.误差的来源与分类2.误差与有效数字3.数值运算的误差估计第三节 误差的定性分析与避免误差的危害1.病态问题与条件数2.算法的数值稳定性3.避免误差危害的若干原则教学重点难点:重点:数值运算的误差估计。难点:误差的定性分析与避免误差的危害。教学建议:了解数值分析的背景、对象与特点。理解误差的来源与分类、有效数字、误差估计、算法的数值稳定性与病态算法。熟练掌握与误差相关的概念以及避免误差危害的若干原则。第二章 插值法基本内容: 第一节 引言第二节 拉格朗日插值1 线性插值与抛
5、物插值 2 拉格朗日插值多项式 3 插值余项、误差估计第三节 均差与牛顿插值公式1 均差及其性质2 牛顿插值公式第四节 差分与等距节点插值公式1 差分及其性质2 等距节点插值公式第五节 埃尔米特插值第六节 分段低次插值1 高次插值的病态性质2 分段线性插值3 分段三次埃尔米特插值第七节 样条插值教学重点难点:重点:插值与抛物插值、牛顿插值公式、等距节点插值公式、分段线性插值难点:插值余项、误差估计、牛顿插值公式、样条插值教学建议:了解插值法的背景及其应用,掌握用拉格朗日插值公式、牛顿插值公式进行插值的方法。明确理解等距节点插值、埃尔米特插值和分段低次插值、插值余项、误差估计。理解样条插值。第三
6、章 曲线拟合的最小二乘法基本内容: 第一节 函数逼近的基本概念1 函数逼近2 范数及其性质第二节 曲线拟合的最小二乘法教学重点难点:重点:曲线拟合的最小二乘法。难点:范数及其性质、曲线拟合的最小二乘法。教学建议:掌握曲线拟合的最小二乘法。第4章 数值积分与数值微分基本内容: 第一节 引言1.数值求积的基本思想2.代数精确度的概念3.插值型的求积公式 第二节 牛顿柯特斯公式1.柯特斯系数2.偶数阶求积公式的代数精度3.几种低阶求积公式的余项第三节 复化求积公式1.复化梯形公式2.复化抛物形求积公式第三节 龙贝格求积公式第四节 高斯求积公式第五节 数值微分中点方法和误差分析插值型的求导公式利用数值
7、积分求导教学重点难点:重点:柯特斯系数、复化求积公式、数值微分。难点:龙贝格求积公式、高斯求积公式教学建议:理解数值求积的基本思想、代数精度的概念、插值型的求积公式、龙贝格算法和用高斯公式进行数值积分。理解数值积分法以及几种低阶求积公式的余项使用。掌握牛顿柯特斯公式、几种低阶求积公式(二阶、三阶)、复化求积法。理解数值微分方法。第5章 解线性方程组的直接方法基本内容: 第一节 引言与预备知识1.向量和矩阵2.特殊矩阵第二节 高斯消去法1.高斯消去法2.矩阵的三角分解第三节 高斯主元消去法1.列主元消去法2.高斯约当消去法第四节 矩阵三角分解法1.直接三角分解2.平方根法第五节 向量和矩阵范数第
8、六节 误差分析教学重点难点:重点:高斯主元消去法、直接三角分解难点:高斯消去法教学建议:掌握高斯主元消去法以及三角分解法。了解矩阵范数、误差分析。理解向量范数和平方根法。掌握高斯(主元)消去法以及三角分解法。第6章 解线性方程组的迭代法基本内容: 第一节 引言第二节 基本迭代法1雅可比迭代法2高斯塞德尔迭代法第三节 迭代法的收敛教学重点难点:重点:雅可比迭代法、高斯塞德尔迭代法难点:迭代法的收敛教学建议:掌握基本的迭代法(雅可比,高斯塞德尔)、了解迭代法的收敛性。第7章 非线性方程求解基本内容: 第一节 方程求根与二分法1 引言2 二分法第二节 迭代法及其收敛性1 不动点迭代法2 不动点的存在
9、性与收敛性3 局部收敛性与收敛阶第三节 迭代收敛的加速方法1 埃特金加速收敛方法2 斯蒂芬森迭代法第四节 牛顿法1 牛顿法及其收敛性2 牛顿法应用举例3 简化牛顿法与牛顿下山法4 重根情形第五节 弦截法与抛物线法1 弦截法2 抛物线法第六节 解非线性方程组的牛顿迭代法。教学重点难点:重点:牛顿法及其收敛性难点:二分法、牛顿法、弦截法及其应用教学建议:理解迭代法的基本思想、迭代过程的收敛性、迭代过程的收敛速度、解非线性方程组的牛顿迭代法。理解迭代过程的加速原理、抛物线法。掌握二分法、牛顿法、弦截法。第8章 常微分方程数值解法基本内容: 第一节 引言第二节 简单的数值方法和基本概念1 Euler方法与后退Euler方法2 梯形方法3 单步法的局部截断误差与阶4 改进的Euler方法第三节 龙格-库塔方法第四节 单步法的收敛性与稳定性第五节 线性多步法教学重点难点:重点:龙格-库塔方法、基于泰勒展开
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024宾馆客房出租合同范本
- 2024年国际版权转让协议(图书)
- 2024年城市穿梭巴士租赁合同
- 2024-2025学年新教材高中生物第2章神经调节第3节神经冲动的产生和传导课堂达标含解析新人教版选择性必修1
- 2024-2025学年新教材高中物理课时作业五向心力含解析新人教版必修2
- 2024-2025高中生物第5章生态系统及其稳定性1生态系统的结构学案新人教版必修3
- 2024年幼儿园合作项目保密协议
- 网络广告投放代理合同
- 物联网传感器设备研发与应用服务合同
- PROTAC-HPK1-Degrader-3-生命科学试剂-MCE
- 人大代表履职工作总结
- 职工履历表简介
- 心智社会:从细胞到人工智能人类思维的优雅解读
- 幼儿园语言文字规范知识竞赛题目及答案
- 难忍之隐-肩颈疼课件
- 屋顶光伏安装安全施工方案
- 脑梗死的患者的心理护理
- 酒店业政策法规解读与合规管理
- 《西方经济学》-完整全套课件
- 中华律师协会 风险代理合同
- 急性肺栓塞的个案护理
评论
0/150
提交评论