


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课 题2.2、配方法(一)课型新授课教学目标21 会用开平方法解形如(X十m) = n(n 0)的方程.2 理解一元二次方程的解法一一配方法.教学重点利用配方法解一兀二次方程教学难点把一元二次方程通过配方转化为(x十m)2 = n(n 0)的形式.教学方法讲练结合法教学后记教学内容及过程学习活动一、复习:1解下列方程:(1)x2=4( 2)(x+3)2=92、什么是完全平方式? 利用公式计算:1(1)(x+6)2( 2)(x 1 )2注意:它们的常数项等于一次项系数一半的平方。3、解方程:(梯子滑动问题)x2+12x15=0二、解:x2 十 12x 一 15= 0,1、引入:像上面第 3题,我
2、们解方程会有困难,是 否将方程转化为第1题的方程的形式呢?2、解方程的基本思路(配方法)女口: x2+12x 15=0转化为(x+6) 2=51两边开平方,得x+6= V51二 X1=V51 6x2=品 6(不合实际)3、配方:填上适当的数,使下列等式成立:(1) X2+12x+=(x+6) 2(2) x2 12x+=(x )2(3) x2+8x+=(x+)2从上可知:常数项配上一次项系数的一半的平方。4、讲解例题:例1 :解方程:x2+8x 9=0(1) x = 2.(2)X 十 3 = 士 3,X 十 3= 3 或 X 十 3一一 3,一 0 , X 2 一6 这种方法叫直接开平方法2(x
3、 十 m) n(n 0).因此,解一元二次方程的基本思路是 将方程转化为(x+m)2=n的形式,它 的一边是一个完全平方式,另一边是 一个常数,当n0时,两边开平方 便可求出它的根。分析:先把它变成(x+m)2=n (n 0)的形式再用直 接开平方法求解。解:移项,得:x2+8x=9配方,得:x2+8x+4 2=9+42(两边同时加上一次项系数一半的平方)即:(x+4) 2=25开平方,得:x+4= 5即:x+4=5,或 x+4= 5所以:xi=l,x2= 95、配方法:通过配成完全平方式的方法得到了一元 二次方程的根,这种解一元二闪方程的方法称为配 方法。三、课堂练习课本P49随堂练习11 .解下列方程(1) x2 一 l0x 十 25= 7; (2) x2 十 6x = 1.四、课时小结(1) X1=5+ 7(2) X1= 3+ . 10-、10x2=57X2= 3五、课后作业(一)课本P49习题2. 3 I、2(二 )1.预习内容 P49 P52.次方程的这节课我们研究了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 3008-1:2025 EN Fire resistance tests - Door and shutter assemblies - Part 1: General requirements
- 【正版授权】 ISO 22341-2:2025 EN Security and resilience - Protective security - Part 2: Guidelines for crime prevention through environmental design for residential facilities
- 2020-2025年中级银行从业资格之中级风险管理题库综合试卷A卷附答案
- 怎么制作教学课件加音乐
- 【邵阳】2025年湖南邵阳市城步苗族自治县事业单位招聘工作人员98人笔试历年典型考题及考点剖析附带答案详解
- 2025年北京市丰台区事业单位招聘工作人员笔试历年典型考题及考点剖析附带答案详解
- 2025年湖南邵阳市北塔区事业单位公开招聘笔试历年典型考题及考点剖析附带答案详解
- 第三章烯烃和二烯烃70课件
- 大学英语教学课件平台
- 2025年物流师职业技能鉴定模拟试卷:物流企业物流成本控制与物流供应链试题含答案
- 二手房预订合同定金协议书模板
- 2024-2025学年江苏省镇江市第三中学七年级(上)期末英语试卷(含答案)
- 教师及教育系统事业单位工作人员年度考核登记表示例范本1-3-5
- 企业突发事件应急处置工作方案
- 护理人文关怀科室汇报
- 《公路建设项目文件管理规程》
- 国家职业技术技能标准 6-30-99-00 工业机器人系统操作员 人社厅发2020108号
- 盲人医疗按摩从业备案申请表(样表)
- DB42∕T 2234-2024 装配型附着式升降脚手架安全技术规程
- 中等职业技术学校人工智能技术应用专业(三年制)人才培养方案
- YDT 5206-2023宽带光纤接入工程技术规范
评论
0/150
提交评论