版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、实用标准文档基于脑电波的便携式睡眠质量监测系统金旭扬导师:华东理工大学信息学院万永菁上海中学信息学科组吴奕明摘要睡眠是人体重要的生理活动,睡眠质量近年来受到高度关注;本文从脑电波角度探寻睡 眠监测的有效易行方法,从软硬件角度设计了便携式睡眠质量监测系统。研究分析便携式脑 电采集设备采集的数据和 CAP睡眠脑电数据库,用功率谱分析和 BP神经网络探究了睡眠分 期的有效算法。实验进行了初步的睡眠分期与质量评估,证明了便携式睡眠质量监测系统的 准确性及利用脑电数据进行睡眠分期的有效性。本课题研究,提出了利用单导连脑电信号进 行睡眠分期的可行性,为之后研究便携式、市场化的睡眠监测设备以及其他应用提供了
2、重要 的实验参考依据。关键词:脑电;脑机接口;睡眠监测;睡眠分期;BP神经网络一、引言1.1睡眠质量研究背景及意义睡眠是一种重要的生理现象。从生到死,人类始终是在觉醒和睡眠中度过。人类通过高 质量的睡眠,可以消除疲劳,更好地恢复精神和体力,使人在睡眠之后保持良好的觉醒状态, 提高工作、学习效率。人类用于睡眠的时间占人一生中的三分之一。然而迄今我们对这一重要的生理现象的认 识还微乎其微,对睡眠进行科学的研究只有短短的几十年历史。1937年,Lomis、Harvey和Hobart注意到,睡眠不是处于一种稳定状态,而是要发生一系列非常有规律的周期性变化。11986年,Rechtschaffe n 等
3、人重新肯定了 Deme nt和Kleitman的分期标准,并根据十年 来的经验作了一些必要的修改和补充,使之更趋完善。22007年,美国睡眠医学会基于上述标准进行改进,发布了新的睡眠分期专业标准,其 中规定了各个指标具体的采集标准及判定方法。31.2脑电信号分析方法综述随着电子技术的发展,数字处理技术逐步应用到EEG的分析中来。经典的EEG分析方法有:以分析EEG波形的几何性质,如幅度、均值、峭度等为主的时域分析方法和以分析EEG各频率功率、相干等为主的领域方法。早在70年代初,W.C.Yeo和J.P.Smith就应用Walsh谱分析离线地研究了一个处于睡眠状态的男性的三段脑电图。R.D.La
4、rsen等应用Walsh顺序的Walsh函数对EEG进行展开,并定义了双值自相关函数,尔后讨论了可以按双 值自相关函数来显示各种睡眠 EEG的特征。1982年,美国物理学家Hopfield提出了 HNN模型,从而有力地推动了应用神经网络方 法解释许多复杂生命过程的进展。自八十年代末以来,人工神经网络的应用已涉及到了脑电 分析的各个方面,其中包括自发脑电的睡眠分级及睡眠EEG分析。S. Roberts和 L.Tarassenko 6,7把人工神经网络应用于睡眠EEG的自动分析。他们采用无监督学习网络对大量没有经过人工判别的数据进行自组织分类,少量的经过人工判别的标准样本则用来自组 织分类结果做解
5、释和量化,从而在网络中形成了8个聚类区。根据EEG在 8个聚类区之间随时间运动的轨迹可以对一夜的睡眠状况有定性的了解。1.3脑电监测设备介绍目前,脑电监测设备大致有二:一为大型的、医院专用的多导睡眠监测系统。这种系统需要测量多导连的脑电图、眼电 图、肌电图、口鼻气流、呼吸运动、血氧饱和度等众多指标,且有严格的判定规则、需要专 业知识。二为便携式脑机接口设备。此类设备通常体积小、使用方便、成本也较低,测量的脑电 图多为单导连,但由于获取的数据用途较为单一,可以很好地完成睡眠监测的任务。1.4课题研究目标本课题利用便携式脑电波采集设备实时获取脑电数据,并且与终端设备通讯实时存储、 分析数据。利用W
6、in dows An droid等移动平台下编写的软件实现此功能,实现人体的睡眠 监控。二、方法和假设2.1系统软硬件平台的基本架构2.1.1睡眠质量监测系统的硬件组成用于采集数据的设备是宏智力公司出品的 Brai nli nk 意念力头箍,它采用基于 Neurosky 芯片平台的Thi nkgear芯片,主要用于检测脑电信号。实验采用手机( An droid )系统和电 脑(WindowS系统作为采集终端。rxB_J3广卩廿也斷幣井L_Jr、图2-1睡眠质量监测系统框图图2-2宏智力公司出品的Brainlink 意念力头箍2.1.2睡眠质量监测系统的数据采集方式NeuroSky的脑电波采集设
7、备较为轻便,只有前额、左耳垂两个电极(一导连)。设备采 用AAA电池供电,根据介绍续航能力有 8小时(若再并联一颗电池可以更长),没有传统脑 电采集中与脑电频段接近的 50Hz工频交流干扰信号。设备采用无线蓝牙连接,更有利于睡 眠时数据的传输;耳垂采用导电夹,容易固定;利用心电图电极片改装前额电极,也可以弥 补原本接触不良的缺点。为了完成单向传输数据的目的,使用的蓝牙模拟串口(发送)芯片能耗低、续航能力强、 编程较为简易。接收端可以是任何蓝牙 4.0设备,只需一次配对后就可自动连接,对于手机、 电脑硬件的要求不高。初步测试时,采集使用的是 Microsoft Windows 平台,使用 Neu
8、rosky提供的API接口,在Visual C+上编写简单的程序即可完成数据的存盘。采样频率约为513.5Hz,远高于脑电信号的最咼有效频率30Hz的两倍,符合采样定理图2-3 Windows 7下的采集、分析软件利用Neurosky提供的An droid API接口,在An droid平台下的脑电波预览、采集工作 也得以完成,程序可以在后台运行,并且将采样数据即使存盘,在实际使用过程中更为方便, 也省去了用电脑建立连接、定义接口的繁杂步骤,适合移动平台。EEG Viewer文案大全仙 中Logging Now 1 $ 537SET FILENAME图2-4 An droid下的采集、预览软件
9、2.2基于脑电信号的睡眠质量监测方法2.2.1脑电信号预处理方法脑电波在时域上属于非平稳随机信号,实验中采集的脑电波只有一导连,因此信号不稳 定、噪波严重。需要经过初步的低通数字滤波预处理。为方便起见,频率衰减带上限取到高 于脑电波分析中有效频率30Hz的50Hz。数字滤波器包括有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器两大类。FIR滤 波器可以得到严格的线性相位,相比IIR需要采用较高的阶数(约是IIR的五至十倍),但 软件实现方便。10假设FIR滤波器的单位冲击响应h(n)为一个长度为N的序列,那么滤波器的系统函数为:H(z)= 龙&何州h=o(2-1)上式的差分形式为:y
10、(n)=工瓜恥)巩痒ml(2-2) 由于理想滤波器在边界频率处不连续,故其时域信号hd(n) 定是无限时宽的,无法实现。因此,需要把具有理想线性相位特性的滤波器曲线用窗函数截取::杜掳二选字阮帧曲(2-3)这种设计思想称为窗函数设计法。其中,常用的汉明窗(Hamming WindoW函数如下:(2-4)Wm() = 0.54一0.46咖 * _ JRn)幅值函数为:iiH血3 = (创叭3)+仏23你3-右寸)+(畑心(a I 4(2-5) 使用Matlab的fir1工具设计300点的FIR低通滤波器,采用汉明窗,以 512Hz作为采 样频率,50Hz作为率减带,得到的滤波器幅频响应曲线如下:
11、-IQQQ100.1OJQjB QA 40 D.T M MH隔伽I血世Amiuen (: 44*1!丁暑亍.w图2-5 300点低通滤波器幅频响应曲线(采用归一化角频率,2 n即为实际采样频率的512Hz)2.2.2脑电信号的频域分析脑电波按频率从高到低划分依次为:B波 (1430Hz) ,口波(814Hz) ,B波(48Hz) 波(0.54Hz) 0脑电波频率范围精神状态B波1430Hz运动感觉节律,放松可集中注意力,有协调性,思 考,对于自我和周围环境意识清楚机警,激动a波814Hz放松但不困倦,安静,有意识B波48Hz直觉的,回忆的,幻想,想象,浅睡S波0.54Hz深度睡眠,非快动眼睡眠
12、,无意识表2-1脑电波的频段划分以及不同类型脑电波所反映出的脑部精神状态12离散时间序列x(n)的傅立叶(Fourier Transform )变换是:=工(对-扣粹n=J(2-6)如已知随机信号x(n)的自相关函数r(k),那么功率谱密度函数就定义为:I+oo尸)二工 rk)e-k(2-7)功率谱函数的另一定义是:亠心1丨(2-8)理论上,离散信号处理方法对有限带宽的信号能做准确分析,但有限带宽信号在时域上 是无限长的,只取其中有限长的一段进行傅立叶变换,相当于在原信号上加了矩形窗运算。 加窗在频域上,对原功率谱起到了平滑的作用。I1 NF(w)二可刀皿5)工(切-513人 n=l(2-9)
13、其中,w(n)表示窗口函数。常用的窗有三角窗、汉宁窗、汉明窗、布莱克曼窗等。这些 窗的旁瓣电平比矩形窗低,但分辨率也较矩形窗低。14这里使用的是汉明窗,在 2.2.1节已有详细介绍。其中,非快速眼动期睡眠深度从深到浅,依次是:N3 N2、N1。2.2.3睡眠分期判定的改进算法根据美国睡眠医学会2007年的标准,睡眠分期的脑电标准如下:睡眠阶段划分规则(仅含脑电,且忽略例外情况)W(觉醒期)枕区a波含量大于50%N1 (非快速眼动期1)a波减弱,低幅度、47Hz的波含量大于50%N2 (非快速眼动期2)开始阶段:出现与觉醒无关的 K复合波或者纺锤波 持续阶段:低幅度、47Hz的波(不含K复合波或
14、纺 锤波)N3(非快速眼动期3)0.52Hz的慢波含量大于20%R (快速眼动期)出现低幅度、47Hz的波(不含K复合波或纺锤波)表2-2睡眠分期的脑电标准3人工神经网络(Artificial Neural Network )是由大量简单的处理单元广泛连接组成 的复杂网络,用于模拟人类大脑神经网络的结构和行为。它反映了人脑功能的许多基本特性,但它并不是 人脑全部的真实写照,而只是对其作某种简化、抽象和模拟15 o在各种学习算法中,多层网络的反向传播算法(简称BP算法)应用最为广泛。BP算法最早是由Werbos在1974年提出来的,Rumelhart等人于1985年发展了该理论,提出了清 晰而又
15、严格的算法。BP算法适用于前向网络,它采用有导师学习的训练形式,提供输入矢 量集的同时提供输出矢量集,通过反向传播学习算法,调整网络的连接权值,以使网络输出 在最小均方差意义下,尽量向期望输出接近,反向学习的进程由正向传播和反向传播组成。 在正向传播过程中,输入信息经隐含神经元逐层处理并传向输出层,如果输出层不能得到期 望的输出,则转入反向传播过程,将实际输出与期望输出之间的误差沿原来的连接通路返回, 通过修改各层神经元的连接权值,使误差减小,然后转入正向传播过程,反复循环,直至误 差小于给定的值为止。设有N个训练对组成的训练集,每一个训练对用输入矢量X= (X i1, x i2,,x im)
16、和输出矢量D=(dii, d i2,,d in),1 i N。在前向传播中,把 X作为网络的输入,根据现有的W计算网络的输出Y=(y ii, y i2,,y in)算每一个输出单元的平方误差2(yj- d j),i.V7工i=l j=l比较实际输出Y与期望输出D之间的差异,计 j m其中n为隐含节点数19。由于本文的样本数为60个,故n取 6,即隐含层有6个节点。隐含层采用对数 S形转移函数(Logarithmic sigmoid transfer fun cti on)f&)= ;rr1 + &(3-1)输出层采用线性函数:f(x) = X(3-2)使用Matlab的newff工具,采用梯度
17、下降自适应学习率训练函数创建 BP神经网络。学 习率定为0.01,目标误差0.01,最大迭代次数500。60个样本中,随机选取50个用于训练, 另外未经过训练的10个用于验证。经过验证,用于验证的样本中有4个判断错误,神经网络的效果并不十分理想。但这四组判断错误的数据中,有一组把 W误判为N1,有一组把N1误判为REM误差并未影响对睡 眠深浅度的判断。此外,对于十组检验样本中的N3(深度睡眠)均为判断错误,可见 BP神经网络还是有着一定的准确程度。四、结论本文主要探究了基于脑电波的便携式睡眠质量监测系统的可行性以及其硬件、软件系统 的技术路线和实现方法,注重考虑了硬件系统的便携性与成本,在关注
18、算法的有效性同时, 探究其简易和可操作程度。本文的实验证明,便携式脑电波采集设备具有传统设备无可比拟 的移动性,适合个人、家庭用户使用;利用它可以获得较高质量的脑电信号、用于分析,结 合神经网络等算法也可以对于睡眠质量进行可靠的监测与评估,还能够初步实现对于睡眠的 分期。但若要根据医学上严格的睡眠分期标准进行评估,需要采集多导连的脑电以及其他心电、呼吸等信号综合评估,且要求较高的职业技能与素养,只凭便携式睡眠监测系统难以满 足要求。本文的实验结果,将为人们更好地研究便携的睡眠监测系统提供有意义的实验依据 与参考。探究单导连脑电信号与人体睡眠的相关性,以及脑电波的现代高级分析算法,是对 本文实验
19、结果进行探讨的重要理论基础。此外,探究脑电波的诱发、治疗理论,和便携式脑 电波采集设备的准确性、可靠性及其市场化后的诊断、评估等应用价值,也可以作为本课题 后续的发展方向。参考文献1 蔡文英,钟龙云,张作生睡眠脑电波的计算机分析中国科学技术大学学报 Vol.20, No.2, Jun.,1990.2 Rechtschaffen, A. and Kales, A. A Manual of Standardized Terminology, Tech niq ues, and Scori ng System for Sleep Stages of Huma n Subjects. Un ivers
20、ity of California, Brain In formatio n Service/Brain Research In stitute, Los An geles, CA,1968.3 lber C, An coli-Israel S, Chess on A, and Qua n SF for the America n Academy of Sleep Medici ne. The AASM Manual for the Scori ng of Sleep and Associated Eve nts: Rules, Termino logy and Tech ni cal Spe
21、cificati ons, 1st ed.: Westchester, Illi no is: America n Academy of Sleep Medici ne, 2007.4 Yeo W.C., et al. Naval Res Catholic Univ of Amer 1972; 293297.5 Larsen R.D., et al. Math Biosci 1976; 31: 237253.6 Roberts S, et al. Med Biol Eng Comput 1992; 30: 509517.7 Roberts S, et al. IEEE procedi ngs-
22、F 1992; 139(6): 420425.8 张杰,王明时.睡眠脑电的研究.国外医学生物医学工程分册,1997年第20卷第2期.9 SHAMBROOM, J. R., F a BREGAS, S. E. and JOHNSTONE, J. (2012), Validation of anautomated wireless system to monitor sleep in healthy adults. Journal of Sleep Research, 21:221 230. doi:10.1111/j.1365-2869.2011.00944.x.10 铙志强,叶念渝.FIR 和IIR数字滤波器的探讨与实现.计算机与数字工程,2005, 33(7).11 史洁玉.MATLAB信号处理超级学习手册.人民邮电出版社,2014. 9.12 陈群.脑电生物反馈治疗仪与睡眠分期的研究.广东工业大学,2013.13 李颖洁,邱意弘,朱贻盛.脑电信号分析方法及其应用.北京:科学出版社,2009.14 PetreStoica,Ran dolph L. Moses. Spectral An alysis of Sig nals.Pears onPren tice Hall, 2005.15 施鸿宝.神经网络及其应用.西安:西安交通大学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 龙岩学院《大数据分析实训》2023-2024学年第一学期期末试卷
- 淮北师范大学《设计软件基础》2023-2024学年第一学期期末试卷
- 贺州学院《燃气储存与输配》2023-2024学年第一学期期末试卷
- 重庆财经学院《时事政治述评》2023-2024学年第一学期期末试卷
- 浙江宇翔职业技术学院《编程语言与技术》2023-2024学年第一学期期末试卷
- 浙江工业大学之江学院《思想政治教育学原理》2023-2024学年第一学期期末试卷
- 抽凝改背压机组项目可行性研究报告模板-备案拿地
- 电路有哪三种工作状态
- 中北大学《学术交流技能》2023-2024学年第一学期期末试卷
- 长治学院《工程图学及应用》2023-2024学年第一学期期末试卷
- 中储粮黑龙江分公司社招2025年学习资料
- 2025年度爱读书学长策划的读书讲座系列合同2篇
- 广东省深圳市宝安区2024-2025学年八年级英语上学期1月期末英语试卷(含答案)
- 《设备房管理标准》课件
- 《交通运输行业安全生产监督检查工作指南 第2部分:道路运输》
- 初二生物期末质量分析及整改措施
- 苏州工业园区ESG发展白皮书
- 《边缘计算单元与交通信号控制机的数据通信标准编制说明》
- 《安防摄像机智能化指标要求和评估方法》
- 湖南省长沙市2024-2025学年高一数学上学期期末考试试卷
- 船舶行业维修保养合同
评论
0/150
提交评论