版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021年中考数学总复习教案【精】 3中考数学复习教案第一章实数与中考第二章中考要求及命题趋势1.正确理解实数的有关概念;2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。4.掌握实数的四则运算、乘方、开方运算以及混合运算5.会用多种方法进行实数的大小比较。2012年中考将继续考查实数的有关概念,值得一提的是,用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。应试对策
2、牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。第一讲实数的有关概念【回顾与思考】知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值大纲要求:1使学生复习巩固有理数、实数的有关概念2了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。3会求一个数的相反数和绝对值,会比较实数的大小4画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。考查重点:1有理数、无理数、实数、非负数概念;2相反数、倒
3、数、数的绝对值概念;3在已知中,以非负数a2、|a|、 a (a0)之和为零作为条件,解决有关问题。 实数的有关概念 (1)实数的组成?正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数(2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。数轴上任一点对应的数总大于这个点左边的点对应的数, (3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零) 从数轴上看,互为相反数的两个数所对应的点关于原点对称 (4)绝对值?从数轴上看,一个数
4、的绝对值就是表示这个数的点与原点的距离 (5)倒数实数a(a 0)的倒数是a1(乘积为1的两个数,叫做互为倒数);零没有倒数第二讲 实数的运算【回顾与思考】知识点:有理数的运算种类、各种运算法则、运算律、运算顺序、科学计数法、近似数与有效数字、计算器功能鍵及应用。 大纲要求:1 了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。2 了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。3 了解近似数和准确数的
5、概念,会根据指定的正确度或有效数字的个数,用四舍五入法求有理数的近似值(在解决某些实际问题时也能用进一法和去尾法取近似值),会按所要求的精确度运用近似的有限小数代替无理数进行实数的近似运算。4 了解电子计算器使用基本过程。会用电子计算器进行四则运算。 考查重点:1 考查近似数、有效数字、科学计算法; 2 考查实数的运算; 3 计算器的使用。实数的运算 (1)加法同号两数相加,取原来的符号,并把绝对值相加;异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值; 任何数与零相加等于原数。 (2)减法 a-b=a+(-b) (3)乘法两数相乘,同号得正,异号得负,并把绝对值相乘;零
6、乘以任何数都得零即?-?=)(0),(|),(|为零或异号同号b a b a b a b a b a ab(4)除法)0(1?=b b a b a (5)乘方个n na aa a = (6)开方 如果x 2a 且x 0,那么a x ; 如果x 3=a ,那么x a =3在同一个式于里,先乘方、开方,然后乘、除,最后加、减有括号时,先算括号里面 3实数的运算律(1)加法交换律 a+b b+a(2)加法结合律 (a+b)+c=a+(b+c) (3)乘法交换律 ab ba (4)乘法结合律 (ab)c=a(bc) (5)分配律 a(b+c)=ab+ac其中a 、b 、c 表示任意实数运用运算律有时可
7、使运算简便 第二章代数式与中考中考要求及命题趋势1、掌握整式的有关知识,包括代数式,同类项、单项式、多项式等;2、熟练地进行整式的四则运算,幂的运算性质以及乘法公式要熟练掌握,灵活运用;3、熟练运用提公因式法及公式法进行分解因式;4、了解分式的有关概念式的基本性质;5、熟练进行分式的加、减、乘、除、乘方的运算和应用。2009年中考整式的有关知识及整式的四则运算仍然会以填空、选择和解答题的形式出现,乘法公式、因式分解正逐步渗透到综合题中去进行考查数与似的应用题将是今后中考的一个热点。分式的概念及性质,运算仍是考查的重点。特别注意分式的应用题,即要熟悉背景材料,又要从实际问题中抽象出数学模型。应试
8、对策掌握整式的有关概念及运算法则,在运算过程中注意运算顺序,掌握运算规律,掌握乘法公式并能灵活运用,在实际问题中,抽象的代数式以及代数式的应用题值得重视。要掌握并灵活运用分式的基本性质,在通分和约分时都要注意分解因式知识的应用。化解求殖题,一要注意整体思想,二要注意解题技巧,对于分式的应用题,要能从实际问题中抽象出数学模型。第一讲整式【回顾与思考】知识点代数式、代数式的值、整式、同类项、合并同类项、去括号与去括号法则、幂的运算法则、整式的加减乘除乘方运算法则、乘法公式、正整数指数幂、零指数幂、负整数指数幂。大纲要求1、了解代数式的概念,会列简单的代数式。理解代数式的值的概念,能正确地求出代数式
9、的值;2、理解整式、单项式、多项式的概念,会把多项式按字母的降幂(或升幂)排列,理解同类项的概念,会合并同类项;3、掌握同底数幂的乘法和除法、幂的乘方和积的乘方运算法则,并能熟练地进行数字指数幂的运算;4、能熟练地运用乘法公式(平方差公式,完全平方公式及(x+a )(x+b)=x 2+(a+b)x+ab )进行运算;5、掌握整式的加减乘除乘方运算,会进行整式的加减乘除乘方的简单混合运算。 考查重点1代数式的有关概念(1)代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子单独的一个数或者一个字母也是代数式(2)代数式的值;用数值代替代数式里的字母,计算后所得
10、的结果p 叫做代数式的值 求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简再求值(3)代数式的分类2整式的有关概念(1)单项式:只含有数与字母的积的代数式叫做单项式对于给出的单项式,要注意分析它的系数是什么,含有哪些字母,各个字母的指数分别是什么。(2)多项式:几个单项式的和,叫做多项式对于给出的多项式,要注意分析它是几次几项式,各项是什么,对各项再像分析单项式那样来分析(3)多项式的降幂排列与升幂排列把一个多项式技某一个字母的指数从大列小的顺序排列起来,叫做把这个多项式按这个字母降幂排列把个多项式按某一个字母的指数从小到大的顺斤排列起来,叫做把这个多项式技这个字母升幂排列,给
11、出一个多项式,要会根据要求对它进行降幂排列或升幂排列 (4)同类项所含字母相同,并且相同字母的指数也分别相同的项,叫做同类顷 要会判断给出的项是否同类项,知道同类项可以合并即x b a bx ax )(+=+其中的X 可以代表单项式中的字母部分,代表其他式子。 3整式的运算(1)整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接整式加减的一般步骤是:(i)如果遇到括号按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉括号里各项都改变符号(ii)合并同类项: 同类项的系数相加,所得的结果
12、作为系数字母和字母的指数不变 (2)整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式相同字母相乘(除)要用到同底数幂的运算性质: ),0(),(是整数是整数n m a aa a n m a a a nm nmn m n m =?-+多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加遇到特殊形式的多项式乘法,还可以直接算: .)(,2)(,)(,)()(332222222b a
13、 b ab a b a b ab a b a b a b a b a ab x b a x b x a x =+=-=-+=+(3)整式的乘方单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式。单项式的乘方要用到幂的乘方性质与积的乘方性质:)()(),()(是整数是整数n b a ab n m a a nn nmn n m =多项式的乘方只涉及 .222)(,2)(2222222ca bc ab c b a c b a b ab a b a +=+=第二讲 因式分解与分式 【回顾与思考】 因式分解知识点因式分解定义,提取公因式、应用公式法、分组分解
14、法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。 大纲要求理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。考查重点与常见题型考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积分解因式要进行到每一个因式都不能再分解为止分解因式的常用方法有: (1)提公因式法如多项式),(c b a m cm bm am +=+其中m
15、 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式 (2)运用公式法,即用)(,)(2),)(223322222b ab a b a b a b a b ab a b a b a b a +=+-+=- 写出结果(3)十字相乘法对于二次项系数为l 的二次三项式,2q px x + 寻找满足ab=q ,a+b=p 的a ,b ,如有,则);)(2b x a x q px x +=+对于一般的二次三项式),0(2+a c bx ax 寻找满足a 1a 2=a ,c 1c 2=c,a 1c 2+a 2c 1=b 的a 1,a 2,c 1,c 2,如有,则).)(22112c
16、x a c x a c bx ax +=+(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号. (5)求根公式法:如果),0(02=+a c bx ax 有两个根X 1,X 2,那么).)(212x x x x a c bx ax -=+分 式知识点:分式,分式的基本性质,最简分式,分式的运算,零指数,负整数,整数,整数指数幂的运算 大纲要求:了解分式的概念,会确定使分式有意义的分式中字母的取值范围。掌握分式的基本性质,会约分,通分。会进行简单的分
17、式的加减乘除乘方的运算。掌握指数指数幂的运算。 考查重点与常见题型:1考查整数指数幂的运算,零运算,有关习题经常出现在选择题中,考查分式的化简求值。在中考题中,经常出现分式的计算就或化简求值,有关习题多为中档的解答题。注意解答有关习题时,要按照试题的要求,先化简后求值,化简要认真仔细, 知识要点1分式的有关概念设A 、B 表示两个整式如果B 中含有字母,式子BA就叫做分式注意分母B 的值不能为零,否则分式没有意义分子与分母没有公因式的分式叫做最简分式如果分子分母有公因式,要进行约分化简 2、分式的基本性质,M B M A B A ?= MB M A B A =(M 为不等于零的整式) 3分式的
18、运算(分式的运算法则与分数的运算法则类似)bd bc ad d c b a = (异分母相加,先通分);;bcadc db a dc b a bdacd c b a =?=? .)(n nn b a b a =4零指数 )0(10=a a5负整数指数 ).,0(1为正整数p a a a pp=- 注意正整数幂的运算性质 nn n mn n m n m n m n m n m b a ab a a a a a a a a a =?-+)(,)(),0(, 可以推广到整数指数幂,也就是上述等式中的m 、 n 可以是O 或负整数 熟练掌握分式的概念:性质及运算 第三讲 数的开方与二次根式 【回顾与思
19、考】 知识点平方根、立方根、算术平方根、二次根式、二次根式性质、最简二次根式、 同类二次根式、二次根式运算、分母有理化大纲要求1.理解平方根、立方根、算术平方根的概念,会用根号表示数的平方根、立方根和算术平方根。会求实数的平方根、算术平方根和立方根(包括利用计算器及查表);2.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式。掌握二次根式的性质,会化简简单的二次根式,能根据指定字母的取值范围将二次根式化简;3.掌握二次根式的运算法则,能进行二次根式的加减乘除四则运算,会进行简单的分母有理化。内容分析1二次根式的有关概念 (1)二次根式 式子)0(a a 叫做二次
20、根式注意被开方数只能是正数或O (2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式 (3)同类二次根式化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式2二次根式的性质 ).0;0();0;0();0(),0(|);0()(22=?=?ab a b a b a ab a a a a a a a a a3二次根式的运算(1)二次根式的加减二次根式相加减,先把各个二次根式化成最简二次根式,再把同类三次根式分别合并 (2)三次根式的乘法二次根式相乘,等于各个因式的被开方数的积的算术平方根,即).0,0(=?b a ab b a二次根
21、式的和相乘,可参照多项式的乘法进行两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式(3)二次根式的除法二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分)把分母的根号化去,叫做分母有理化考查重点与常见题型1.考查平方根、算术平方根、立方根的概念。有关试题在试题中出现的频率很高,习题类型多为选择题或填空题。2.考查最简二次根式、同类二次根式概念。有关习题经常出现在选择题中。3.考查二次根式的计算或化简求值,有关问题在中考题中出现的频率非常高,在选择题和中档解答题中出现的较多。第三章方程(组)与中考
22、中考要求及命题趋势一元一次方程与一元一次方程组是初中有关方程的基础,在各地中考题中,多数以填空、选择和解答题的形式出现,大多考查一元一次方程及一次方程组的概念和解法,一般占5%左右。方程和方程组的应用题是中考的必考题,考查学生建模能力和分析问题和解决问题的能力,以贴进生活的题目为主。占10%左右。2009年中考将继续考查概念和解法这些基础知识,类型仍以选择、填空为主,也可能出现解答题,有时也会与一次函数、一次不等式相结合出题。一元二次方程是二次函数的一种特殊形式,两者有着密切的关系,实验区各地中考题主要以填充、选择、解答题、综合题的形式考查一元二次方程的概念、解法,一般占5%左右。2009年中
23、考将继续以考查概念和解法为主,形式基本相同。新课标中分式方程以简化,只考查了化为一元一次方程的分式方程。大多以填空、解答题出现,以考查解法为主,一般占3%左右。2009年中考将以考查解法为主,题型仍不会变。方程和方程组的应用题是中考的必考题,近几年主要考查学生建模能力和分析问题、解决问题的能力,以贴近生活的题目为主。一般占10%左右。2009年中考仍将以生活应用题为出题方向,或者与函数综合出题。应试对策1、要弄清一元一次方程及二元一次方程组的定义,方程(组)的解(整数解)等概念。2、要熟练掌握一元一次方程,二元一次方程组的解法。3、要弄清一元一次方程与一次函数、一元一次不等式之间的关系。4、要
24、弄清一元二次方程的定义,ax +bx+c=0(a 0),a,b,c均为常数,尤其a不为零要切记。5、要弄清一元二次方程的解的概念。6、要熟练掌握一元二次方程的几种解法,如因式分解法、公式法等,弄清化一元二次方程为一元一次方程的转化思想。7、要加强一元二次方程与二次函数之间的综合的训练。8、让学生理解化分式方程为整式方程的思想。9、熟练掌握解分式方程的方法。10、让学生学会行程、工程、储蓄、打折销售等基本类型应用题的分析。11、让学生掌握生活中问题的数学建模的方法,多做一些综合性的训练。知识点等式及基本性质、方程、方程的解、解方程、一元一次方程、一元二次方程、简单的高次方程大纲要求1.理解方程和
25、一元一次方程、一元二次方程概念;2.理解等式的基本性质,能利用等式的基本性质进行方程的变形,掌握解一元一次方程的一般步骤,能熟练地解一元一次方程;3.会推导一元二次方程的求根公式,理解公式法与用直接开平方法、配方法解一元二次方程的关系,会选用适当的方法熟练地解一元二次方程;4.了解高次方程的概念,会用因式分解法或换元法解可化为一元一次方程和一元二次方程的简单的高次方程;5.体验“未知”与“已知”的对立统一关系。内容分析1方程的有关概念含有未知数的等式叫做方程使方程左右两边的值相等的未知数的值叫做方程的解(只含有个未知数的方程的解,也叫做根)2一次方程(组)的解法和应用只含有一个未知数,并且未知
26、数的次数是1,系数不为零的方程,叫做一元一次方程解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化成13.一元二次方程的解法(!)直接开平方法形如(mx+n)2=r(ro)的方程,两边开平方,即可转化为两个一元一次方程来解,这种方法叫做直接开平方法(2)把一元二次方程通过配方化成(mx+n)2=r(ro)的形式,再用直接开平方法解,这种方法叫做配方法(3)公式法通过配方法可以求得一元二次方程ax2+bx+c=0(a0)的求根公式:a acbbx24 2-=用求根公式解一元二次方程的方法叫做公式法(4)因式分解法如果一元二次方程ax2+bx+c=0(a0)的左边可以分解为两个一次
27、因式的积,那么根据两个因式的积等于O,这两个因式至少有一个为O,原方程可转化为两个一元一次方程来解,这种方法叫做因式分解法考查重点与常见题型考查一元一次方程、一元二次方程及高次方程的解法,有关习题常出现在填空题和选择题中。第一讲一次方程(组)及应用【回顾与思考】第二讲一元二次方程及应用【回顾与思考】【例题经典】掌握一元二次方程的解法第三讲分式方程及应用【回顾与思考】知识点分式方程、二次根式的概念、解法思路、解法、增根大纲要求了解分式方程、二次根式方程的概念。掌握把简单的分式方程、二次根式方程转化为一元一次方程、一元二次方程的一般方法,会用换元法解方程,会检验。内容分析1分式方程的解法(1)去分
28、母法用去分母法解分式方程的一般步骤是:(i)在方程的两边都乘以最简公分母,约去分母,化成整式方程;(ii)解这个整式方程;(iii)把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去.在上述步骤中,去分母是关键,验根只需代入员简公分母.(2)换元法用换元法解分式方程,也就是把适当的分式换成新的未知数,求出新的未知数后求出原来的未知数2二次根式方程的解法(1)两边平方法用两边平方法解无理方程的般步骤是:(i)方程两边都平方,去掉根号,化成有理方程;(ii)解这个有理方程;(iii)把有理方程的根代入原方程进行检验,如果适合,就是
29、原方程的根,如果不适合,就是增根,必须舍去在上述步骤中,两边平方是关键,验根必须代入原方程进行(2)换元法用换元法解无理方程,就是把适当的根号下台有未知数的式子换成新的未知数,求出新的未知数后再求原来的未知数考查重点与常见题型考查换元法解分式方程和二次根式方程,有一部分只考查换元的能力,常出现在选择题中另一部分习题考查完整的解题能力,习题出现在中档解答题中。第四讲列出方程(组)解应用题知识点列方程(组)解应用题的一般步骤、列方程(组)解应用题的核心、应用问题的主要类型大纲要求能够列方程(组)解应用题内容分析列出方程(组)解应用题的一般步骤是:(i)弄清题意和题目中的已知数、未知数,用字母表示题
30、目中的一个(或几个)未知数;(ii)找出能够表示应用题全部含义的一个(或几个)相等关系;(iii)根据找出的相等关系列出需要的代数式,从而列出方程(或方程组);(iv)解这个方程(或方程组),求出未知数的值;(v)写出答案(包括单位名称)第四章不等式与不等式组与中考中考要求及命题趋势1.不等式,一元一次不等式(组)及其解集的概念。2.不等式的基本性质,一元一次不等式(组)解法以及解集的数轴表示。3.解决不等式(组)的应用题,要求学生会将应用题里关于已知量未知量之间的关系用明确的不等式关系表示出来,并注意应用题中字母所表示的实际意义。2009年的中考将会以填空和选择的方式考查不等式的基本性质和解
31、集概念,解答题是解不等式(组),并把解集在数轴上表示出来。不等式的应用题还是热点考查内容,考查可能与日常生活相联系,也可能与其他章节内容,如方程、函数及几何内容相结合。应试对策解不等式(组)是本节的重点,而不等式的性质是解不等式的基础,在复习本节时,首先要强化三条性质的应用顺练,切忌不等式两边同乘(除)含字母的代数式(即正负不明的代数式);其次注意数形结合的方法,即充分利用数轴,关于不等式(组)的应用题,要通过建模训练,学会找出实际问题中的不等关系,并能在不等式的解集中找出符合题意的答案,还要注意与其他类型的应用题结合起来训练。第一讲一元一次不等式(组)及应用【回顾与思考】知识点不等式概念,不
32、等式基本性质,不等式的解集,解不等式,不等式组,不等式组的解集,解不等式组,一元一次不等式,一元一次不等式组。大纲要求1.理解不等式,不等式的解等概念,会在数轴上表示不等式的解;2.理解不等式的基本性质,会应用不等式的基本性质进行简单的不等式变形,会解一元一次不等式;3.理解一元一次不等式组和它的解的概念,会解一元一次不等式组;4.能应用一元一次不等式(组)的知识分析和解决简单的数学问题和实际问题。内容分析一元一次不等式、一元一次不等式组的解法(1)只含有一个未知数,并且未知数的次数是1,系数不为零的不等式,叫做一元一次不等式解一元一次不等式的一般步骤是去分母、去括号、移项、合并同类项和系数化
33、成1要特别注意,不等式的两边都乘以(或除以)同一个负数,要改变不等号的方向(2)解一元一次不等式组的一般步骤是:(i)先求出这个不等式组中各个一元一次不等式的解集;(ii)再利用数轴确定各个解集的公共部分,即求出了这个一元一次不等式组的解集考查重点与常见题型考查解一元一次不等式(组)的能力,有关试题多为解答题,也出现在选择题,填空题中。第五章函数与中考中考要求及命题趋势函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右。一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择
34、、解答题及综合题的形式考查,占5%左右。反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,36分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中。要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决实际问题。会求一元二次方程的近似值。2009年依然主要考查自变量的取值范围及自变量与因变量之间的变化图像为主。一次函数的图像和性质;在实际问题中考查对反比例函数的概念及性质的理解。将继续考查二次函
35、数,重点关注它与代数、几何知识的综合应用,加强二次函数的实际应用。应试对策1、理解函数的概念和平面直角坐标系中某些点的坐标特点。2、要进行自变量与因变量之间的变化图像识别的训练,真正理解图像与变量的关系。3、掌握一次函数的一般形式和图像4、掌握一次函数的增减性、分布象限,会作图5、明确反比例函数的特征图像,提高实际应用能力。6、牢固掌握二次函数的概念和性质,注重在实际情景中理解二次函数的意义,关注与二次函数相关的综合题,弄清知识之间的联系。第一讲变量之间的关系与平面直角坐标系【回顾与思考】知识点平面直角坐标系、常量与变量、函数与自变量、函数表示方法大纲要求1.了解平面直角坐标系的有关概念,会画
36、直角坐标系,能由点的坐标系确定点的位置,由点的位置确定点的坐标;2.理解常量和变量的意义,了解函数的一般概念,会用解析法表示简单函数;3.理解自变量的取值范围和函数值的意义,会用描点法画出函数的图像。内容分析1平面直角坐标系的初步知识在平面内画两条互相垂直的数轴,就组成平面直角坐标系,水平的数轴叫做x轴或横轴(正方向向右),铅直的数轴叫做y轴或纵轴(正方向向上),两轴交点O是原点这个平面叫做坐标平面x轴和y把坐标平面分成四个象限(每个象限都不包括坐标轴上的点),要注意象限的编号顺序及各象限内点的坐标的符号:由坐标平面内一点向x轴作垂线,垂足在x轴上的坐标叫做这个点的横坐标,由这个点向y轴作垂线
37、,垂足在y轴上的坐标叫做这个点的纵坐标,这个点的横坐标、纵坐标合在一起叫做这个点的坐标(横坐标在前,纵坐标在后)一个点的坐标是一对有序实数,对于坐标平面内任意一点,都有唯一一对有序实数和它对应,对于任意一对有序实数,在坐标平面都有一点和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的2函数设在一个变化过程中有两个变量x与y,如果对于x的每一个值, y都有唯一的值与它对应,那么就说x是自变量, y是x的函数用数学式子表示函数的方法叫做解析法在用解析式表示函数时,要考虑自变量的取值范围必须使解析式有意义遇到实际问题,还必须使实际问题有意义当自变量在取值范围内取一个值时,函数的对应值叫做自变
38、量取这个值时的函数值3函数的图象把自变量的一个值和自变量取这个值时的函数值分别作为点的横坐标和纵坐标,可以在坐标平面内描出一个点,所有这些点组成的图形,就是这个函数的图象也就是说函数图象上的点的坐标都满足函数的解析式,以满足函数解析式的自变量值和与它对应的函数值为坐标的点都在函数图象上知道函数的解析式,一般用描点法按下列步骤画出函数的图象:(i)列表在自变量的取值范围内取一些值,算出对应的函数值,列成表(ii)描点把表中自变量的值和与它相应的函数值分别作为横坐标与纵坐标,在坐标平面内描出相应的点(iii)连线按照自变量由小到大的顺序、用平滑的曲线把所描各点连结起来 第二讲 正比例、反比例、一次
39、函数知识点正比例函数及其图像、一次函数及其图像、反比例函数及其图像 大纲要求1理解正比例函数、一次函数、反比例函数的概念; 2理解正比例函数、一次函数、反比例函数的性质; 3会画出它们的图像;4会用待定系数法求正比例、反比例函数、一次函数的解析式内容分析1、一次函数(1)一次函数及其图象如果y=kx+b (K ,b 是常数,K 0),那么,Y 叫做X 的一次函数。 特别地,如果y=kx (k 是常数,K 0),那么,y 叫做x 的正比例函数一次函数的图象是直线,画一次函数的图象,只要先描出两点,再连成直线 (2)一次函数的性质当k0时y 随x 的增大而增大,当k2、反比例函数(1) 反比例函数
40、及其图象 如果)0,(=k k xky 是常数,那么,y 是x 的反比例函数。 反比例函数的图象是双曲线,它有两个分支,可用描点法画出反比例函数的图象 (2)反比例函数的性质当K0时,图象的两个分支分别在一、二、三象限内,在每个象限内, y 随x 的增大而减小;当K3.待定系数法先设出式子中的未知数,再根据条件求出未知系数,从而写出这个式子的方法叫做待定系数法可用待定系数法求一次函数、二次函数和反比例函数的解析式考查重点与常见题型1考查正比例函数、反比例函数、一次函数的定义、性质,有关试题常出现在选择题中2综合考查正比例、反比例、一次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像
41、,试题类型为选择题3考查用待定系数法求正比例、反比例、一次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题4利用函数解决实际问题,并求最值,这是近三年中考应用题的新特点。第一节一次函数【回顾与思考】一次函数0,0,y y xk y x?一般式y=kx+b(k0)概念正比例函数y=kx(k0)随的增大而增大性质随的增大而减小b图象:经过(0,b),(-,0)的直线k第二节反比例函数【回顾与思考】反比例函数?概念图像与性质应用第三节二次函数【回顾与思考】知识点二次函数、抛物线的顶点、对称轴和开口方向大纲要求1理解二次函数的概念;2会把二次函数的一般式化为顶点式,确定图象的
42、顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3会平移二次函数yax2(a0)的图象得到二次函数ya(axm)2k的图象,了解特殊与一般相互联系和转化的思想;4会用待定系数法求二次函数的解析式;5利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。内容(1)二次函数及其图象如果y=ax 2+bx+c(a,b,c 是常数,a 0),那么,y 叫做x 的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向抛物线y=ax 2+bx+c(a 0)
43、的顶点是)44,2(2ab ac a b -,对称轴是a b x 2-=,当a0时,抛物线开口向上,当a抛物线y=a (x+h )2+k(a 0)的顶点是(-h ,k ),对称轴是x=-h. 第四节 用函数的观点看方程(组)或不等式【回顾与思考】 第六章三角形与中考中考要求及命题趋势1、线段的和与差及线段的中点;2、角的概念、分类及计算;3、对顶角、余角、补角的性质及计算;度、分、秒的换算;4、垂线、垂线段、线段的垂直平分线的定义及性质;5、直线平行的条件的应用;6、平行线的特征的应用。7、三角形三边的关系;三角形的分类 8、三角形内角和定理; 9、全等三角形的性质10、三角形全等的条件11、
44、三角形中位线的定义及性质12、等腰三角形的性质与条件;13、直角三角形的性质与判别条件2009年中考,将继续考查线段的中点的概念及应用,对顶角、余角、补角的性质及应用。继续考查垂线、线段的垂直平分线的性质的应用,平行线性质与判定方法的应用。三角形全等的性质和判别条件,等腰三角形、直角三角形的性质和判别条件。应试对策1、认真掌握好线段中点的定义及相关表示方法,对顶角、邻补角、余角的性质。2、认真掌握垂线,线段垂直平分线的性质与判别;平行线的性质与判定方法3、熟练掌握与三角形有关的基本知识和基本技能;三角形全等的性质和判别条件,等腰三角形、直角三角形的性质与判别条件,并需注意将有关知识应用到综合题
45、的解题过程中去,如把某些问题化为三角形的问题求解;能从复杂的图形中寻求全等的三角形等。第一讲几何初步及平行线、相交线【回顾与思考】知识点两点确定一条直线、相交线、线段、射线、线段的大小比较、线段的和与差、线段的中点、角、角的度量、角的平分线、锐角、直角、钝角、平角、周角、对顶角、邻角、余角、补角、点到直线的距离、同位角、内错角、同旁内角、平行线、平行线的性质及判定、命题、定义、公理、定理大纲要求1了解直线、线段和射线等概概念的区别,两条相交直线确定一个交点,解线段和与差及线段的中点、两点间的距离、角、周角、平角、直角、锐角、钝角等概念,掌握两点确定一条直线的性质,角平分线的概念,度、分、秒的换
46、算,几何图形的符号表示法,会根据几何语句准确、整洁地画出相应的图形;2了解斜线、斜线段、命题、定义、公理、定理及平行线等概念,了解垂线段最短的性质,平行线的基本性质,理解对顶角、补角、邻补角的概念,理解对顶角的性质,同角或等角的补角相等的性质,掌握垂线、垂线段、点到直线的距离等概念,会识辨别同位角、内错角和同旁内角,会用一直线截两平行线所得的同位角相等、内错角相等、同旁内角互补等性质进行推理和计算,会用同位角相等、内错角相等、或同旁内角互补判定两条直线平行第二讲三角形的概念和全等三角形【回顾与思考】三角形?三角形的概念及表示三角形的基本要素及基本性质三边的关系,三内角的关系三角形的高,中线,角
47、平分线三角形全等的表示及特征三角形的全等探索三角形全等的条件三角形全等的应用知识点:三角形,三角形的角平分线,中线,高线,三角形三边间的不等关系,三角形的内角和,三角形的分类,全等形,全等三角形及其性质,三角形全等判定大纲要求1了解全等形,全等三角形的概念和性质,逆命题和逆定理的概念,理解三角形,三角形的顶点,边,内角,外角,角平分线,中线和高线,线段中垂线等概念。2理解三角形的任意两边之和大于第三边的性质,掌握三角形的内角和定理,三角形的外角等于不相邻的两内角的和;三角形的外角大于任何一个和它不相邻的内角的性质;3理解全等三角形的概念和性质。掌握全等三角形的判定公理及其推论,并能应用他们进行
48、简单的证明和计算。4学会演绎推理的方法,提高逻辑推理能力和逻辑表达能力,掌握寓丁几何证明中的分析,综合,转化等数学思想。考查重点与常见题型1.三角形三边关系,三角形内外角性质,多为选择题,填空题;2.论证三角形全等,线段的倍分,常见的多为解答题第三节等腰三角形【回顾与思考】等腰三角形60?等边对等角性质三线合一腰与底边不等的等腰三角形等角对等边判定定义三边相等性质三角都相等有一个角等于的等腰等边三角形三角形判定三边都相等(或三角都相等)的三角形 知识点等腰三角形、等腰三角形的性质和判定、等边三角形、等边三角形的性质 和判定、轴对称、轴对称图形 大纲要求1理解等腰三角形的概念,掌握等腰三角形的两
49、底角相等、等腰三角形三线合一等性质,掌握两个角相等的三角形是等腰三角形等判定定理,并能运用它们进行简单的证明和计算;2理解等边三角形的概念,掌握等边三角形的各角都是60等性质,掌握三个角都相等的三角形或一个角是60的等腰三角形都是等边三角形等判定,能运用它们进行简单的证明和计算;3了解轴对称及轴对称图形的概念,会判断轴对称图形。 考查重点与常见题型等腰三角形和等边三角形的性质和判定的应用,证明线段、角相等,求线 段的长度、角的度数,中考题中多以选择题、填空题为主,有时也考中档 解答题,如:(1)如果,等腰三角形的一个外角是125,则底角为 度;(2)等腰三角形一腰上的高与底边的夹角为45,则这
50、个三角形是( ) A 锐角三角形 B 钝角三角形 C 等边三角形 D 等腰直角三角形第四节 直角三角形【回顾与思考】直角三角形?三边关系-勾股定理-应用直角三角形的性质-应用直角三角形的判别知识点直角三角形的性质和判定、逆命题和逆定理、勾股定理及逆定理、角平分线的性质、线段的中垂线及其性质 大纲要求了解逆命题和逆定理的概念;掌握直角三角形中两锐角互余、斜边上的中线等于斜边的一半及30角所对的直角边等于斜边的一半等性质,掌握勾股定理及其逆定理,并能运用它们进行简单的论证和计算;掌握角平分线的性质定理及其逆定理,线段中垂线性质定理及其逆定理。考查重点与常见题型直角三角形性质及其判定的应用,角平分线
51、性质定理及其逆定理,线段中垂线的性质定理及其逆定理的应用,逆命题的概念,中考题中多为选择题或填空题,有时也考查中档的解答题,如:(1)在直角三角形中,已知一条直角边的长为6,斜边上的中线长为5,则另一条直角边的长为(2)命题“平行四边形的对角线互相平分”的逆命题是(3)在ABC中,如果AB90,那么ABC是()(A)直角三角形(B)锐角三角形(C)钝角三角形(D)锐角三角形或钝角三角形第七章四边形与中考中考要求及命题趋势1、多边形的内角和,外角和定理;2、平面图形密铺的条件。3、平行四边形的性质。4、平行四边形的判别条件。5、矩形、菱形、正方形的概念及性质的应用。6、平行四边形、矩形、菱形、正
52、方形的关系。7、平行四边形是矩形、菱形、正方形的条件的应用。8、梯形、直角梯形的定义及应用。9、等腰梯形的定义性质及判别方法的应用2009年中考将继续考查多边形的内、外角和公式的应用,平行四边形的性质和判别方法的应用,考查特殊平行四边形的性质与判别方法,其中菱形、矩形、正方形的性质与判别将是考查的重点,关注特殊四边形与函数类问题结合的题型。将继续考查梯形有关的计算与证明,其中等腰梯形的性质与判别方法的应用是考查的重点。应试对策1、熟记多边形的内角和公式、外角和公式,会利用公式求多边形的边数理解平行四边形的面积、周长、对称性,掌握平行四边形的性质。2、掌握矩形、菱形、正方形的相关性质和判别方法,
53、进行证明和计算,要注意培养数形结合的能力,灵活运用知识解决综合性问题的能力。3、理解梯形、直角梯形的有关概念,会进行有关计算,掌握等腰梯形的性质与判别方法的应用,熟练其辅助线的添法,体会转化的思想。知识点四边形、四边形的内角和与外角和、多边形、多边形的内角和与外角和、平行四边形、平行四边形的性质和判定、两条平行线间的距离、矩形、菱形、正方形的性质和判定。大纲要求1理解多边形,多边形的顶点、边、内角、外角及对角线等概念,理解多边形的理解和定理,掌握四边形的理解和和外角和都是360的性质;2了解两点间的距离。点到直线的距离与两条平行线之间的距离及三者之间的联系,了解平行四边形不稳定性的应用,理解两条平行线间的距离概念;3掌握平行四边形、矩形、菱形、正方形等概念,掌握平行四边形、矩形、菱形、正方形的性质和判定,通过定理的证明和应用的教学,使学生逐步学会分别从题设和结论出发,寻找论证思路分析法和综合法,进一步提高分析问题,解决问题的能力。考查重点与常见题型考查特殊四边形的判定、性质及从属关系,此类问题在中考中常以填空题或选择题出现,也常以证明题的形式出现。第一节多边形与平行四边形【回顾与思考】【例题经典】利用平行四边形的性质求面积会根据条件选择适当方法判定平行四边形能利用平行四边形的性质进行计算第二节矩形、菱形、正方形【回
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《标准理解与实施》课件
- 《盾构施工测量培训》课件
- 《员工安全教育讲义》课件
- 《测序技术介绍》课件
- 单位管理制度集合大全职工管理篇
- 单位管理制度集粹选集员工管理篇十篇
- 单位管理制度汇编大全职工管理篇
- 单位管理制度合并汇编【职员管理篇】
- 《客服分析报告会》课件
- 单位管理制度分享合集【人力资源管理】十篇
- 工程竣工资料整理工程资料服务合同
- 智能化手术室介绍strykerisuite课件
- 水利机械施工方案
- 广东省佛山市南海区大沥镇2023-2024学年九年级上学期期中物理试卷
- ESD内部审核日程计划表+内审检查表+内审报告全套资料
- HSK标准教程5下-课件-L
- 电脑基础知识
- 工程竣工预验收签到表
- 静钻根植桩施工组织设计
- 工程精细化管理
- 小学音乐-(演唱)小拜年教学设计学情分析教材分析课后反思
评论
0/150
提交评论