反常霍尔效应[高教课堂]_第1页
反常霍尔效应[高教课堂]_第2页
反常霍尔效应[高教课堂]_第3页
反常霍尔效应[高教课堂]_第4页
反常霍尔效应[高教课堂]_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 反常霍尔效应 Anomalous Hall effect 1 教育教学 一、反常霍尔效应(反常霍尔效应(AHEAHE) 1.1常规霍尔效应 1.2反常霍尔效应(AHE) 1.3AHE的特征 1.4 AHE的应用 二、反常霍尔效应的理论研究反常霍尔效应的理论研究 2.1 Karplus和Luttinger本征机制 2.2 Smit的skew scattering理论 2.3Berger的side jump机制 2.4贝里相位在AHE中的体现 三、三、AHEAHE实验的研究和进展实验的研究和进展 3.1pxyp xx2 3.2pxyp xx 3.3一次方项和二次方项的混合 3.4指数在变化 四、

2、近期在四、近期在-Fe3N纳米晶体薄膜中发现较强的常规霍尔效应(2009年物 理评论的一篇文章) 2 教育教学 1.1常规霍尔效应(ordinary Hall effect) 1879年,Edwin Hall本人发现了霍尔效应,即处在磁 场 中的非磁性非磁性金属或半导体薄片中的载流子受到洛伦兹力的 影响偏向一边,导致一个可测量的霍尔电压。 横向霍尔电阻率xy xy(依赖于外加磁场的大小): xy xy=R0 0B(R0 0称为常规霍尔系数) (1) *这一领域的发展和研究相对完善,我们重点关注反常霍尔效应这一领域的发展和研究相对完善,我们重点关注反常霍尔效应 3 教育教学 1.2反常霍尔效应

3、在铁磁性铁磁性(FM)的金属材料样品里,横向电阻率xy的 大小除了包括(1)式中的常规项外,还另外增加了与样品的磁 化强度M大小有关的反常项,当样品达到饱和磁化强度Ms时,它 就变成了常数. 根据经验, xy=R0B +4RsM, (2) 其中Rs称为反常霍尔系数。 4 教育教学 图1 霍尔电阻率xy与磁场大小的关系曲线示意图 图1给出了横向霍尔电阻率xy与磁场大小B的关系曲线。 xy先随B迅速线性增加,经过一个拐点后线性缓慢增加,直至 饱和.显然,这不能简单用磁场的洛伦兹力来解释.因而,通常人 们称这种现象为反常霍尔效应(anomalous Hall effect). 正常霍尔效应正常霍尔效

4、应xy=R0B 5 教育教学 1.3反常霍尔效应的特征 (1)通常Rs大于R0至少一个量级以上 (2)强烈地依赖于温度 (3)在铁磁性金属中,即使没有外加磁场B,仅 有x方向的电场E时,也会出现横向霍尔电压VH 现在看来,AHE是一种对称破缺的 现象,这一点上铁磁材料和非磁材料有很大区 别:铁磁材料在没有外加磁场时就有自发时间 反演不对称。所以其机理上不一样是正常的, 完全一样倒是有些奇怪。 6 教育教学 1.4反常霍尔效应的应用 常规霍尔效应有着广泛的应用,如确定半导体的导电类 型,测定载流子浓度和迁移率,以及制造霍尔传感器等等。 而反常霍尔效应则是探究和表征铁磁材料中巡游电探究和表征铁磁材

5、料中巡游电 子输运特性子输运特性的重要手段和工具之一.它的测量技术被广泛应用 于许多领域,最重要的应用是在新兴的自旋电子学方面.例如, 在III-V族半导体中掺入磁性锰原子,从而实现材料铁磁性与 半导体性的人工联姻,促进了稀磁半导体(DMS)材料的诞生。 7 教育教学 二、 反常霍尔效应的理论研究反常霍尔效应的理论研究 8 教育教学 2.1 Karplus和Luttinger本征机制 1954年, Karplus和Luttinger从理论上详细研究了自 旋-轨道耦合作用对自旋极化巡游电子的输运影响,第一次提 出了反常霍尔效应的内禀机制内禀机制. 他们完全忽略杂质、声子等散射,把外加电场作为微

6、扰动展开,推导出在包含自旋-轨道耦合相互作用的理想晶体 能带中运动的载流子,存在一个正比于贝里曲率的反常速度. 正是由于这个反常速度的存在,在外加电场下,同时考虑到上 自旋与下自旋的电子占据数不相等,导致电子将会有个净的横 向电流,产生反常霍尔效应。 9 教育教学 10 教育教学 2.2 Smit的skew scattering理论 Smit批驳了Karplus和Luttinger的观点,认为在真实 的材料中总是存在缺陷或者杂质, 提出了螺旋散射(skew scattering)机制,认为对于固定自旋方向的电子,由于自旋- 轨道耦合相互作用,电子受到杂质的散射是不对称的,结果定 向运动的电子偏

7、离原来的方向,形成横向的电荷积累,它的直 观物理图像如图2所示.螺旋散射主要由被散射的载流子偏离 原来路径方向的角度H(也称为自发霍尔角)来表征 :H=xy/. 11 教育教学 图2 根据螺旋散射可以得到霍尔电阻率xy与成正比,即xy, 而且 霍尔电阻率xy还依赖于散射势的类型和作用距离. 12 教育教学 2.3 Berger的side jump机制 1972年,Berger提出了另一个非本征的机制,同样是由 于散射中自旋轨道耦合的影响,特定自旋的载流子在经历与 杂质散射后其质心位置向某个特定的方向偏移了一点 (side jump)。其示意图如下: 后来,人们认为Side jump机制可以被间

8、接的看做KLanomalous velocity的特殊表现,其中的外加电场换成了杂质势引起的电场。 13 教育教学 根据边跳机制可以得到霍尔电阻率xy 与成二次方关系,即 xy2 这似乎可以成功地解释在铁、镍和铁 镍合金中实验观察到的xy与总电阻平方2 成线性关系的现象.边跳机制模型与具体散射 势的形式无关 14 教育教学 2.4贝里相位在AHE中的体现 2004年,Yugui yao(中国科学院物理研究所/北京凝聚态 物理国家实验室)等人将 Berry Phase的AHE理论跟第一性原理 结合起来,对布里渊区里的 Berry curvature积分,历史上 首次从理论得出了本征机制本征机制造

9、成的AHE的大小,对Fe和Co,这 一数值都与室温下的实验值相差不多,对Ni的偏差稍大。 2006年, shigeki Onoda等人从Berry phase出发 同时考虑本征机制本征机制和 skew scattering,得出了大范围内, 随电导率变化反常霍尔电导率的变化趋势。后经实验观察大 量材料中的AHE符合这一趋势。 2008年N.A.sinitsyn18从考虑 Berry phase的波 包动力学出发,把得到的新现象跟半经典理论结合起来,同 时得到了来自本征本征和非本征机制的微观表达式。 15 教育教学 反常霍尔效应机制的研究还有待于取得进 一步突破,完善的理论(特别是结合第一性原理

10、计算 的理论)的建立在目前还是一个具有挑战性的任务. 16 教育教学 三、三、AHEAHE实验的研究和进展实验的研究和进展 17 教育教学 AHE实验的研究者主要关注与pxy和pxx之间 的函数关系。但是不同元素的结论并不一致。 人们讨论实验数据的思路大体上可以分为 四类: (1)pxyp xx2 (2)pxyp xx (3)一次方项和二次方项的混合 (4)指数在变化 18 教育教学 3.1 PXYP XX2 (1)pxyp xx2, 以Fe为代表。 右图铁的实验结果 不论是变温还是变化掺杂 Fe的pxy和p xx之间 基本是一个二次幂函数 的关系。 19 教育教学 3.2 PXYP XX(S

11、KEW SCATTERING的表现) 1972年,A.Fert在超纯的Ni中掺入百万分之 几浓度的其他杂质才观察到了一次方关系21 。如下图: 20 教育教学 3.3 一次方项和二次方项的混合 如下图的两个实验中,作者认为反常霍 尔电阻率须由一个二次项加上一个一次项来解 释 即AH= a xx+ b xx 2。 作图方法是将反常霍尔电阻率pAH除以 xx作为纵坐标, xx作为横坐标,这时截距是 a,斜率就是b 21 教育教学 3.4 指数在变化 pAH和pxx的关系偏离一次方和二次方 的关系一般出现在温度接近居里温度时,居里 温度时由于磁性消失,可以预料磁性导致的 AHE也会有较大变化。这不是

12、人们关注的重点 。但是对于某些材料来说,即使在合理的低温 下, pAH和pxx的关系也不固定,典型的代表是 Ni 22 教育教学 从低温到高温,幂指数从接近2变到1.46左右。 23 教育教学 各种材料不同行为给人们带来了很 大困扰,也导致几种理论都不能被很好的肯定 或者否定。 24 教育教学 文献介绍了不同颗粒尺寸和结构缺陷的- Fe3N纳米晶体薄膜样品的结构、磁学和电学 特性。 25 教育教学 选择材料-Fe3N的原因: 1.近年来对氮化铁材料性质的研究很丰富,但 是其反常霍尔效应的研究却少之甚少。 2. 当颗粒大小在10-300纳米之间时,在10- 300K的温度范围内, -Fe3N纳米

13、晶体薄膜的 饱和磁化强度基本保持稳定.这样由xy =R0B +4RsMs知, xys(饱和)将依赖于Rs的变化 3.在不同的膜厚和温度下,-Fe3N纳米晶体薄 膜的电导率将有较小的变化(150-250 cm ) 26 教育教学 样品制备方法: 1.利用磁控溅射的方法,(99.99%)Fe靶,Ar气 和N气5:1混合,玻璃做衬底。 2. 沉积之前,真空室内压强抽到1*10-5Pa 溅射总压强保持在1.0Pa。 3.沉积过程中,基底以30 rpm速度旋转。 4.两样品S1、S2的基底温度分别为300oC和25oC 27 教育教学 实验者制作了两种-Fe3N纳米晶体薄膜 S1:基底温度300oC,颗

14、粒尺寸10nm S2:基底温度25oC,颗粒尺寸6.5nm 用X射线光电子能谱仪(XPS)分析薄膜成 分; 用表面分析仪测得样品薄膜厚度为200nm ; 用MPMS测得样品的磁学性质; 用TEM(电子投射显微镜)观测其微观结 构 用传统的四探针法测薄膜样品的电阻,五 探针法用于霍尔测量。 28 教育教学 FIG1是TEM的明视场 图样和 S1、S2的衍射 电子选区。 图中显示了两样品的 衍射环。 可以看到S1、S2都是 由纳米晶体颗粒组成。 S1的颗粒直径为 10nm,而S2颗粒直径 约为6.5nm. 。 如(c)的箭头所示S2中有非晶形的成分存在 29 教育教学 与标准衍射图样对比可知,两样

15、品的 主要成分都是-Fe3N。但是一些衍射光环与 -Fe2O3一致。这是由于在用胶固定样品( 120oC,30min)或者研磨样品时,样品被部分 氧化造成的。 30 教育教学 如FIG3所示,实验测得: 1.S1的饱和磁化强度为 1013emu/cc(和已知Fe3N薄膜 理论值一致) 2.但是,S2的饱和磁化 强度比S1的值小很多(约为 791emu/cc) 3. S2(大约350Oe)的矫顽力(Hc)比S1(大约230Oe) 的大 31 教育教学 解释:由于S2中存在较多的颗粒边 界和非磁性物质,颗粒边界的无序旋转对磁性 有较大影响,使其饱和磁化强度较小,而矫顽 力较大(Fe3O4 和NiF

16、e2O4中也有类似规律) 32 教育教学 如FIG4所示: 1.在5-300K之间, xx 基本不随温度变化(有 2%-5%的波动范围) 2. 需要注意需要注意:S1和S2随温度的变化不同。 S1的xx 随温度降低而降低.,在50K时达到最低(典型的 金属特征)。如右上角的插图所示,低于50K时, 和T成对数关系(这在NixNb1x 金属玻璃和 Mn5Si3Cx 薄膜一致,来源于晶体的颗粒边界、错位、 点缺陷等。) S1和S2样品的xx分别 为248和419 cm 33 教育教学 3.相反,S2的xx随温度降低而升高,这和 许多非晶材料相似,(有相同颗粒尺寸和非晶形的 Fe3N薄膜与其有类似的温度负系数)而非晶材料的 与T之间的经验公式为: 上图中系数A=0.999, B=0.013,=126.432, 这与TEM的观测结果一直,由于 S2中存在大量的颗 粒边界和非晶象,使得其与S1的电、磁性质大不一样 。 34 教育教学 图5为S1和S2分别在5K 和300K下的霍尔电导率 与外磁场的关系 右下角插图知Ro (S1)=5*1012cm/G Ro (S2)=1.5*1011cm/G 当外加磁场为零时,由 xy=4RsM得到Rs的图像。 在300K是时,S1和S2的Rs值分别为1.2和2.4* 109 cm/G,这比块状铁(7.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论