版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五章异方差性课后题参考答案5.1因为,所以取弘=十,用幽乘给定模型两端得丄 xli2X2i上述模型的随机误差项的方差为一固定常数,即Ui12Var(*)2Var(uJ *X2iX2i(2)根据加权最小二乘法,可得修正异方差后的参数估计式为* * *必=丫 -?2X 2 -?3X 3? (ZWiyx2WiXL(迟W2iyj(xZWi*XXi二77二*2;W2i X2i JW2i X3i-乂2 X2i X3i?3(ZW2iy*iW2iX$厂(瓦W2iy(XM*Xi*XiW2i X*2i li* 2* 2iW2i X2iW2i X3i -其中*X2、W2iX 2*WiX i 3X3 -*、Wi/_
2、、W,iX2i- X2X3 二X3 - X3y= iY y5.2(1)Yy_x氏 Y_X宾丁 (u)= ( J1u 二 ln(u) 1又;Eln(u) =0.E(J) =Eln(u) 1 =Eln( u) 1 =1(2)Eln( J)HX R In 7 =ln 1 丨 =0= i 丨 叮=1E()八二叮=1不能推导出|1 / =1所以E)=1时,不一定有E( ln J =0(3)对方程进行差分得:lnYi-lnYi-1 =nX % )+(ln-ln 叫 J则有:E(ln 7 _ln 叫)=05.3(1) 该模型样本回归估计式的书写形式为:Y = 11.44213599 + 0.62678299
3、62*X(3.629253)(0.019872)t= 3.15275231.540972 2R 0. 94 49 1 1 R =0. 94 39 6 1 S.E.=9.158900DW=1.597946F=994.8326(2) 首先,用Goldfeld-Quandt法进行检验。a.将样本X按递增顺序排序,去掉中间1/4的样本,再分为两个部分的样本,即厲2 =22。b.分别对两个部分的样本求最小二乘估计,得到两个部分的残差平方 和,即瓦 e2 = 624.3004 瓦 ef = 2495.840J求F统计量为Z2电2495.840F=3 9978e2 624.3004 3.9978给定:=0.
4、05,查F分布表,得临界值为F0.05(20,20) =212。C.比较临界值与F统计量值,有f =4.1390Fo.o5(20,20)=212,说明该模型 的随机误差项存在异方差。其次,用White法进行检验。具体结果见下表White Heteroskedasticity Test:F-statistic6.105557Probability0.003958Obs*R-squared10.58597Probability0.005027给定:=0.05,在自由度为2下查卡方分布表,得2=5.9915。比较临界值与卡方统计量值,即nR2 =10.8640 2 =5.9915,同样说明模型中的
5、随机误差项存在异方差。(2)用权数W =1/|e|,作加权最小二乘估计,得如下结果Depe ndent Variable: YMethod: Least SquaresDate: 05/28/07 Time: 00:20Sample: 1 60In cluded observati ons: 60Weight ing series: 1/RVariableCoefficientStd. Errort-StatisticProb.C27.500006.09E-084.52E+080.0000X0.5000007.16E-106.98E+080.0000Weighted StatisticsR-s
6、quared1.000000varMean depe ndent70.01964Adjusted1.000000S.D. depe ndent379.890R-squaredvar9S.E. of regressi on8.44E-10Akaike info-38.916criteri on22Sum squared4.13E-17Schwarz criterio n-38.846residLog likelihood1169.487F-statistic414.88E+170.00000Durbi n-Wats on0.786091Prob(F-statistic)stat0Un weigh
7、tedStatisticsR-squared0.883132Mean depe ndent119.666var7Adjusted0.881117S.D. depe ndent38.6898R-squaredvar4S.E. of regressi on13.34005Sum squared10321.5resid0Durbi n-Wats on0.377804statWhite检验:White Heteroskedasticity Test:F-statistic2.357523Probability0.1038220.101063Obs*R-squared4.584017Probabilit
8、yTest Equati on:Depe ndent Variable: STD_RESID2Method: Least SquaresDate: 05/28/07 Time: 00:27Sample: 1 60In cluded observati ons: 60VariableCoefficientStd. Errort-StatisticProb.C3.86E-191.73E-192.2337560.0294X3.21E-212.16E-211.4895320.1419XA2-7.59E-246.18E-24-1.2296410.2239R-squared0.076400Mean dep
9、e ndent6.88E-1var9Adjusted0.043993S.D. depe ndent1.56E-1R-squaredvar9S.E. of regressi on1.52E-19Sum squared1.32E-3resid6F-statistic2.357523Durbi n-Wats on1.19153stat1Prob(F-statistic)0.1038225.4令Y表示农业总产值,X1-X5分别表示农业劳动力、灌溉面积、化肥用量、户 均固定资产和农机动力。建立模型:丫八0X 泊23X34X45X5回归结果如下:丫?= 4.717198 0.039615-0.036895
10、X2 0.263256X3 0.013463X4 0.025469X5t =(0.516910)(1.452697) ( -0.474813)(0.479104)(2.712997)(1.625993)R2 =0.974539 R2=0.953321 DW=1.969898 F=45.93047从回归结果可以看出,模型的R2和R2值都较高,F统计量也显著。但是除X4的系数显著之外,其他系数均不显著,模型可能存在多重共线性。计算各解释变量的相关系数。相关系数矩阵X1X2X3X4X5X11.0000000.8518670.9631730.4569130.892506X20.8518671.0000
11、000.8435410.5493900.856933X30.9631730.8435411.0000000.5830480.924806X40.4569130.5493900.5830481.0000000.543765X5 0.8925060.8569330.9248060.5437651.000000由相关系数矩阵可以看出,解释变量之间的相关系数较高,存在多重共线性。 采用逐步回归的办法,来解决多重共线性问题。分别做丫对XI、X2、X3、X4、X5的一元回归,结果如下表所示:一元回归结果变量X1X2X3X4X5参数估计值0.0840780.4567671.5264100.0352770.0
12、78269t统计量8.0976515.09937111.621322.9913268.197929R20.8676760.7222500.9310610.4722410.870476R20.8544430.6944750.9241670.4194650.857524其中加入X3的方程R2最大,以X3为基础,顺次加入其他变量逐步回归,结果如下:加入新变量的回归结果(一)变量X1X2X3X4X5R2X3,X10.0026361.4819090.915816(0.089770)(2.879293X3,X2)0.0669091.3602910.9212040.7899585.456584X3,X41.
13、3522910.0096910.9444929.7767642.159071X3,X51.1156800.0235520.929684(3.355936)(1.335921)经比较,新加入X4的方程R2 =0.944492,改进最大且从经济意义来看,户均固定资产对农业总产值有影响,因此保留 X4,再加入其他变量逐步回归,结果 如下:加入新变量的回归结果(二)变量X1X2X3X4X5R2X3,X4 X10.0354380.6966510.0128870.949360(1.365712)(1.399128)(2.638461X3,X4 X2丿0.0474861.241502)0.0092960.9
14、40595(1.487193(5.528062(1.984375)X3, X4,0.9519240.0095940.0230590.952585X5(3.375236(2.312344(1.592574)加入X1后方程的R2增大,但是t值不显著;加入X2后R2降低,且系数不显著;假如X5后方程的R2增大,但是t值不显著。修正多重共线性影响的回归结果为: =14.74802 +1.352291X3 +0.009691X4t =1.8354419.7767642.1590712 2R2=0.954584 R 2 =0.944492 DW=2.482223 F=94.58409White检验:nR2
15、 =4.132927 瞪05(5) =11.0705接受原假设,模型不存在异方差。5.5(1) 建立样本回归模型。7=1 92.99 4 40 X03 1 9( 0.1 9 48)( 3.83 )R2 =0.4 7 8s,= . .27159. 1 5,1 4.66 92(2) 利用White检验判断模型是否存在异方差。White Heteroskedasticity Test:F-statistic3.057161Probability0.076976Obs*R-squared5.212471Probability0.073812给定:=0.05和自由度为2下,查卡方分布表,得临界值2=5.
16、9915, 而White统计量nR2 =5.2125,有nR 爲(2),则不拒绝原假设,说 明模型中不存在异方差。(3) 有Glejser检验判断模型是否存在异方差。经过试算,取如 下函数形式e = P/X得样本估计式 =6.4435 .X(4.5658) R2 =0.2482由此,可以看出模型中随机误差项有可能存在异方差。(4) 对异方差的修正。取权数为 wN/X,得如下估计结果Y?二-243.4910 0.0367X(-1.7997)(5.5255)2R =0.1684, s.e. =694.2181, F = 30.53090.6561425.6回归结果如下:Y? =0.89 0.237
17、200Xit =(4.356086) (15.89724)se=(0.204312)( 0.014921 )2 2R2 =0.933511 R2=0.929817 DW=1.363966 F=252.7223 e: -0.3 、 e22i =2.024= 6.7467F0.05(8,)=3.44拒绝原价设,模型存在异方差。取权数为Y? =0.752923 +0.249487Xise=(0.098255)( 0.011723)Wx,加权后回归结果:t = (7.662934)(21.28124)2 2R2 =0.765382 R2=0.752348 DW=1.240480 F=452.89145
18、.7(1) 求回归估计式。Y?=4.61030. X5 7 4(4.2495)(5.0516)R2 =0 . 5 8 6ste严.3.F3910,25.5 183作残差的平方对解释变量的散点图3025-2015-10-51030RESIDE由图形可以看出,模型有可能存在异方差。(2) 去掉智利的数据后,回归得到如下模型W = 6.73810.X2 15(2.8254)(0.3987)2R =0 . 0 0 9s,= . . 3 ,F3z90 6,作残差平方对解释变量的散点图0.1589RESIDE从图形看出,异方差的程度降低了。(3)如果去掉智利数据后得出不存在异方差的结论,则说明异方差性还会
19、 因为异常值的出现而产生。5.8(1)回归结果如下:Y = 12.12542711 + 0.1043661755*X(19.51012(0.008439)t= (0.621494)(12.36777)2R =0.854718R2 =0.849130S.E.=56.89947DW=1.212859F=152.9617销售收入每增长一元,销售利润平均增长0.104366元给定。=0.05,t =12.36777t.025(26) =2.056,拒绝原假设,说明销售收入对销售 利润有显著性影响。F =152.9617 a F0.o5(1,26) = 4.23 R2 = 0. 8 5 4 6 9表明方
20、程显著,且拟和程度较 好(2)图形法:500040003000X200010000 -200 -100 0 100RESID从图中可以看出,e2i有随着X增大而增大的趋势,所以模型可能存在异方差 用Glejser检验模型是否存在异方差。经过试算,取如下函数形式e = : 2、X得样本估计式| ?|=1.049787 Xt =8.075394R2=0.306629系数显著不为0,由此,可以看出模型中随机误差项有可能存在异方差。White检验:White Heteroskedasticity Test:F-statistic3.609579Probability0.041959Obs*R-squa
21、red6.273796Probability0.043417nR2 =6.273796 720.05(2) =5.91147拒绝原假设,模型存在异方差。(3) 对异方差的修正。取权数为 W二/x2,得如下估计结果Depe ndent Variable: YMethod: Least SquaresDate: 05/28/07 Time: 00:16Sample: 1 28In cluded observati ons: 28Weight ing series: 1/XA2VariableCoefficie ntStd. Errort-StatisticProb.C6.4548963.48563
22、41.8518570.0754X0.1070750.0109849.7481670.0000Weighted StatisticsR-squared0.922863varMean depe ndent67.93474Adjusted0.919896S.D. depe ndent var75.46572R-squaredS.E. of regressi on21.35880Akaike info criteri on9.029554Sum squared11861.15Schwarz criteri on9.124711residLog likelihood-124.4137F-statisti
23、c95.02675Durbi n-Wats on1.909174Prob(F-statistic)0.000000statUn weightedStatisticsR-squared0.854132Mean depe ndent213.4650varAdjusted0.848522S.D. depe ndent var146.4895R-squaredS.E. of regressi on57.01397Sum squared resid84515.42Durbi n-Wats on1.244888statWhite检验:White Heteroskedasticity Test:F-stat
24、istic3.143257Probability0.060574Obs*R-squared= 5.626143 =Probability0.0600202 、. 2nR =5.626143 V 尤 0.05( 2)=5.91147不存在异方差.5.9(1)建立样本回归函数。7=4 3.89670.X 104(2.1891)(37.7771)2R =0 .9 8 5s4s, = . .60F49 20,1 42 7.1 1 2从估计的结果看,各项检验指标均显著,但从残差平方对解释变量散点图可以看 出,模型很可能存在异方差。1500X 1MO500-500010000150002Q00DRESID
25、E(2)用White检验判断是否存在异方差。White Heteroskedasticity Test:F-statistic9.509463Probability0.001252Obs*R-squared11.21085Probability0.0036782由上表可知,nR =11.2109,给定:=0.05,在自由度为2下,查卡方分布表, 得临界值为2 =5.9915,显然,n R2=11.2109 5.15,则拒绝原假设,说 明模型存在异方差。进一步,用ARCH检验判断模型是否存在异方差。经试算选滞后阶数为1,则ARCH检验结果见下表ARCH Test:F-statistic9.394
26、796Probability0.006109Obs*R-squared7.031364Probability0.0080092由上表可知,(n -P)R =7.0314,在=0.05和自由度为1下,查卡方分布表,2 2 2得临界值为 金=3.8415,显然,(n - p)R =7.0314人点1)3.8415,则说明 模型中随机误差项存在异方差。(3)修正异方差。取权数为 W=1/e2,得如下估计结果Depe ndent Variable: YMethod: Least SquaresDate: 05/28/07 Time: 02:15Sample: 1978 2000In eluded ob
27、servati ons: 23Weighti ng series: W2VariableCoefficie ntStd. Errort-StatisticProb.C6.6590270.25376126.241330.0000X0.8686910.000985881.79380.0000Weighted StatisticsR-squared1.000000Mean depe ndent var224.0761Adjusted R-squared1.000000S.D.dependent var988.1865S.E. of regressi on0.206384Akaike info cri
28、teri on-0.235219Sum squared resid0.894478Schwarz criteri on-0.136481Log likelihood4.705022F-statistic777560.3Durb in -Watson stat1.281139Prob(F-statistic)0.000000Un weighted StatisticsR-squared0.980282Mean depe ndent var633.0004Adjusted R-squared0.979343S.D.dependent var490.5345S.E. of regressi on70
29、.50182Sum squared resid104380.6Durb in -Watson stat0.279924Y = 6.65902728 + 0.8686910728*XWhite检验White Heteroskedasticity Test:F-statistic1.021337Probability0.378144Obs*R-squared2.131389Probability0.344489经检验异方差的表现有明显的降低。5.10剔除物价上涨因素后的回归结果如下:Y? =36.66453 0.753946Xt =(3.516150) (22.43266)R2 =0.959941
30、 R2 =0.958033 F=503.2243其中丫代表实际消费支出,X代表实际可支配收入 用White方法来检验模型是否存在异方差:White Heteroskedasticity Test:F-statistic1.647288Probability0.2176470.196625Obs*R-squared3.252914ProbabilityTest Equati on:Depe nde nt Variable: RESIDEMethod: Least SquaresDate: 05/07/07 Time: 17:14Sample: 1978 2000In cluded observa
31、ti ons: 23VariableCoefficientStd. Errort-StatisticProb.C105.9636475.51820.2228380.8259X10.2642903.0373300.0870140.9315X1A20.0009670.0043920.2200610.8281R-squared0.141431Mean depe ndent275.881var8Adjusted0.055574S.D. depe ndent272.672R-squaredvar6S.E. of regressi on264.9875Akaike info14.1183criteri on5Sum squared1404368.Schwarz criterio n14.2664resid6Log likelihood-159.361F-statistic1.6472808Durbi n-Wats on1.456581Prob(F-statistic)0.21764stat7n R2 =3.252914 沪0.05(2) =5.9915,表明模型不存在异方差。G-Q检验:Depe ndent Variable: Y1Method: Least SquaresDate: 05/07/07 Time: 17:18Sample: 1978 1986I
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论