2021年中考一轮复习数学《二次函数》压轴题必做题型25道(难度较大)_第1页
2021年中考一轮复习数学《二次函数》压轴题必做题型25道(难度较大)_第2页
2021年中考一轮复习数学《二次函数》压轴题必做题型25道(难度较大)_第3页
2021年中考一轮复习数学《二次函数》压轴题必做题型25道(难度较大)_第4页
2021年中考一轮复习数学《二次函数》压轴题必做题型25道(难度较大)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021年中考数学复习二次函数压轴题必做题型25道(难度较大)(无答案)1. 如图,有一块三角形空地,底边长BC100米,高AH80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,D、G分别在AB、AC边上,E、F在边BC上,当矩形DEFG的面积最大时,这个矩形的长与宽各是多少米?最大面积为多少?2. 如图,已知抛物线y=-x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0).(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.3. 如图,抛物线yax2bxc(a0)与x轴交于点A、B(1,0),与y轴交

2、于点C,直线y12x2经过点A、C.抛物线的顶点为D,对称轴为直线l.(1)求抛物线的解析式;(2)求顶点D的坐标与对称轴l; 4. 如图,在平面直角坐标系中,点A,B的坐标分别为(6,6),(6,0),抛物线y=-(x-m)2+n的顶点P在折线OAAB上运动.(1)当点P在线段OA上运动时,抛物线y=-(x-m)2+n与y轴交点坐标为(0,c).用含m的代数式表示n.(2)当抛物线y=-(x-m)2+n经过点B时,求抛物线所对应的函数解析式.5. 如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为,若抛物线与扇形OAB的边界总有两个公共点,求实数k的

3、取值范围6. 如图,已知抛物线经过两点A(-3,0),B(0,3),且其对称轴为直线x=-1.(1)求此抛物线的解析式.(2)若点P是抛物线上点A与点B之间的动点(不包括点A,点B),求PAB的面积的最大值,并求出此时点P的坐标.7. 体育公园的圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处为喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下(如图1).如果曲线APB表示的是落点B离点O最远的一条水流(如图2),水流喷出的高度y(米)与水平距离x(米)之间的解析式是y=-x2+4x+94(x0),求圆形水池的半径至少为多少米时,才能使喷出的水流不至于落在池外.8. 如图,抛物线经过

4、A(-2,0),B,C(0,2)三点.(1)求抛物线的解析式;(2)在直线AC下方的抛物线上有一点D,使得DCA的面积最大,求点D的坐标. 9. 已知某款熊猫纪念品成本为30元/件,当售价为45元/件时,每天销售250件,售价每上涨1元,销量下降10件.(1)求每天的销量y(件)与销售单价x(元)之间的函数解析式.(2)若每天该熊猫纪念品的销量不低于240件的情况下,当销售单价为多少元时,每天获取的利润最大?最大利润是多少?(3)小张决定从这款纪念品每天的销售利润中捐出150元给希望工程,为了保证捐款后这款纪念品每天剩余的利润不低于3 600元,试确定该熊猫纪念品销售单价的范围.10. 如图,

5、抛物线yax2bxc(a0)与x轴交于点A、B(1,0),与y轴交于点C,直线y12x2经过点A、C.抛物线的顶点为D,对称轴为直线l.(1)求抛物线的解析式;(2)在对称轴l上是否存在一点F,使得BCF的周长最小?若存在,求出点F的坐标及BCF周长的最小值;若不存在,请说明理由; 11. 已知抛物线y=ax2+bx+c(a,b,c是常数,a0)的对称轴为直线x=-1.(1)b=;(用含a的代数式表示)(2)当a=-1时,若关于x的方程ax2+bx+c=0在-4x1的范围内有解,求c的取值范围;(3)若抛物线过点(-1,-1),当0x1时,抛物线上的点到x轴距离的最大值为4,求a的值.12.

6、已知m,n是一元二次方程x24x30的两个实数根,且|m|n|.二次函数yx2bxc的图象经过点A(m,0),B(0,n),如图所示(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D的坐标,并判断BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为 个单位长度设点P的横坐标为t,PMQ的面积为S,求出S与t之间的函数解析式13. 如图 12-1,抛物线 y=ax2bx3 交 x 轴于点 A(-1,0)和点 B(3,0)(1)求该抛物线所对应的函数解析式

7、;(2)如图 12-2,该抛物线与 y 轴交于点 C,顶点为 F,点 D(2,3)在该抛物线上求四边形 ACFD 的面积;14. 在平面直角坐标系中,已知抛物线y 12x2bxc(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,1),C的坐标为(4,3),直角顶点B在第四象限(1)如图,若该抛物线过A,B两点,求抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.若点M在直线AC下方,且为平移前(1)中的抛物线上的点当以PQ为直角边,M,P,Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;15. 已知m,n是

8、一元二次方程x24x30的两个实数根,且|m|n|.二次函数yx2bxc的图象经过点A(m,0),B(0,n),如图所示(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D的坐标,并判断BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为 个单位长度设点P的横坐标为t,PMQ的面积为S,求出S与t之间的函数解析式 16. 如图,已知抛物线yx2bxc与直线AB相交于A(3,0),B(0,3)两点,与x轴的另一个交点为C,对称轴为直线l,顶点为D,对称轴与

9、x轴的交点为E.(1)求直线AB的解析式及抛物线的解析式;(2)在抛物线上是否存在一点G,使得SACG2?若存在,求出点G的坐标,若不存在,请说明理由; 17. 二次函数y=-x2+bx+c的图象与直线y=-x+1相交于A,B两点(如图),A点在y轴上,过点B作BCx轴,垂足为C(-3,0).(1)填空:b=,c=.(2)点N是二次函数图象上一点(点N在AB上方),过点N作NPx轴,垂足为点P,交AB于点M,求MN的最大值.(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的点N的坐标.18. 如图,已知抛物线yx2bxc与直线AB相交于A(3,0),B(0,3

10、)两点,与x轴的另一个交点为C,对称轴为直线l,顶点为D,对称轴与x轴的交点为E.(1)求直线AB的解析式及抛物线的解析式;(2)连接BC,在抛物线上是否存在一点M(异于点C),使得SABMSABC?若存在,求出点M的坐标;若不存在,请说明理由; 19. 已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(-2,0),点P是线段AB上方抛物线上的一个动点. (1)求抛物线的解析式.(2)当点P运动到什么位置时,PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PEx轴交抛物线于点E,连接DE,请问是否存在点P使PDE为等腰直角三角形

11、?若存在,求出点P的坐标;若不存在,说明理由.20. 平面直角坐标系xOy中,二次函数yx22mxm22m2的图象与x轴有两个交点(1)当m2时,求二次函数的图象与x轴交点的坐标;(2)过点P(0,m1)作直线ly轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求ABO的面积最大时m的值21.如图,在平面直角坐标系xOy中,抛物线yax22ax3a(a0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:ykxb与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD4AC. (1)直接写

12、出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(3)设点P是抛物线的对称轴上的一点,点Q在抛物线上以AD为边,点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由;以AD为对角线,点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由22. 如图,抛物线与x轴交于点A,点B,与y轴交于点C,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为,过点P作x轴的垂线l交抛物线于点Q(1)求直线BD的解析式;(2)当点P在线段OB上运动时,直线l交BD于点M,求面积S和m的函数关系式,并求出面积的最大值;(

13、3)当面积最大时,在x轴上找一点E,使的值最小,求E的坐标和最小值23. 如图1,在平面直角坐标系中,直线yx1与抛物线yx2bxc交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP为斜边,在直线AD的同侧作等腰直角APM和等腰直角DPN,连接MN,试确定MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由24. 如图,抛物线y=-23x2+bx+c与x轴交于A,B两点(点A在点B的左侧),点A的坐标为(-1,0),与y轴交于点C(0,2),直线CD:y=-x+2与x轴交于点D.动点M在抛物线上运动,过点M作MPx轴,垂足为点P,交直线CD于点N.(1)求抛物线的表达式.(2)当点P在线段OD上时,CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由.(3)点E是抛物线对称轴与x轴的交点,点F是x轴上一动点,点M在运动过程中,若以C,E,F,M为顶点的四边形是平行四边形时,请写出点F的坐标.25. 如图1,抛物线y=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论