版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、基于zscore模型的企业财务预警系统构建 一、文献综述与理论支持 (一)研究综述 财务预警模型最早起源于20世纪30年代的西方经济学界。经过了这些年学者们的不断努力,财务预警系统日趋完善,先后出现了单变量判别模型、多元线性判别模型、线性概率分析、逻辑回归分析、人工神经网络模型等。 (1)国外研究。运用个别财务比率对财务危机进行预测这种做法是由fitzpatrick于1932年提出的。后来,beaver在此基础上提出了较为完整的单变量分析法。在众多多元线性判别模型中,典型代表当属美国阿尔曼教授于1968年建立的z分数模型,不但方法简单而且精确度高,所以这个模型被西方企业一直沿用至今。1980年
2、,ohlson首先提出条件概率模型。1992年,salchenberger等使用了人工神经网络模型对金融企业进行了财务失败的判断。altman、marco和varetto(1994)也使用了这种方法对意大利的企业进行了财务失败的判断。这些研究分析的结果都比线性判别模型的效果要好。更有一些国外学者把两种以上的模型结合使用以建立联合预测模型。如韩国的b.s.ahn等(2000)将粗糙集理论与神经网络方法结合起来,英国的feng yulin和sally mcclean(2001)将四种财务预警的方法结合起来。这些研究的结果表明,在同等的条件下,联合多种模型的预测结果会比单一的预测结果好。 (2)国内
3、研究。相对于国外而言,国内对财务预警系统的研究起展较慢,但目前也有不少学者在该领域的研究上取得了一定的成果。周守华等(1996)在阿尔曼模型的基础上提出来f分数模型。陈静(1999)对财务数据进行了单变量分析和多元线性判别分析。张玲(2000)建立的二类线性判别模型获得了超前4年的预测结果。杨保安等(2001)建立的人工神经网络模型更是获得了与实际情况基本一致的实验结果。 (二)财务预警系统相关理论 具体包括: (1)财务预警系统的含义与构建原则。财务预警是以企业的财务会计信息(财务报表、经营计划及其他相关会计资料)为基础,通过设置并观察一些敏感性财务指标的变化,而对企业或集团可能或将要面临的
4、财务危机实现预测预报和实时监控的财务分析系统。企业可以运用这个系统分析企业财务状况的现状,了解企业目前的经营情况,及时发现问题并得出相应的对策。一个好的财务预警系统应该能及时预知企业的财务危机,并能凸显导致企业面临财务危机的原因,使管理者能迅速对问题采取适当的措施,将危机扼杀在摇篮里,从根本上防止财务危机的出现,保证企业健康持续发展。 (2)财务预警系统的功能。财务预警系统一般具有以下功能:信息收集功能、监测功能、预警功能、诊断功能、治疗功能和免疫功能。要对一件事情进行预测就必须先收集到与其相关的一切资料、所以信息收集工作需要始终贯穿于财务预警的活动中。时刻收集信息并随时对信息作出相应的判断,
5、就体现了其监测功能。而作为一个预警系统,其首要功能是能在危机出现前预测危机的到来。通过收集、分析数据,预警系统能判断出企业财务已经出现的问题和能找到适当的应对措施,若下次再遇到同样的问题就能很快的得出解决的方法。 二、现有财务预警模型存在的缺陷 (一)单变量模型存在的缺陷 单变量判别模型只运用了单一的财务比率,而财务比率的预测方向经常有相当大的差距,所以容易出现使用不同的财务比率预测会有不同判断结果的现象。再者,该模型只运用的一个财务比率,但明显一个财务比率是无法代表企业整体的经营情况的,而且单一的财务比率很容易受到盈余管理和外部经营环境等的影响。所以,单变量模型就逐渐被其他模型取代了。 (二
6、)多变量模型存在的缺陷 主要有: (1)z分数模型的主要缺陷。第一,理论基础不足。大量财务预警模型的实证表明,陷入经营危机的企业基本上都出现了财务危机的征兆。但虽然z分数模型得到了很多实例验证,但目前还没有一个完整的理论可以证明财务危机的出现和财务指标低于正常值有必然的联系。而且,在提出z分数模型时阿尔曼无法提供选取当中五个指标的依据。第二,假设很难达到。z分数模型假设预测变量有着严格服从联合正态分布,且分组样本间的协方差要相等,而在现实中这个假设条件很难成立。而且,一旦预测变量中包含虚拟变量,假设就不能成立。第三,忽略了企业的现金流量。z分数模型是建立在企业的资产负债表和利润表的财务数据之上
7、,并没有考虑到企业的现金流量表。而许多专家证实,现金流量比率是预测企业破产的有效变量。第四,忽略了行业之间的差异。阿尔曼在建立该模型的时候的研究对象是美国的33家制造企业,研究的行业单一,不适合笼统的套用在其他行业上。 (2)其他模型的主要缺陷。线性概率模型的误判率和多元线性模型的判断效果相当。多元逻辑模型计算复杂,预测精度较低。人工神经网络模型是目前预测精度最高的模型,但其理论基础比较抽象且建立和运用过程十分复杂,适用性不强。 三、适合中国国情z-scone模型的构建方法 (一)拟建模型的优点 具体如下: (1)以数理统计方法弥补理论的不足。虽然现阶段还没有一个完整的理论支撑z分数模型,但该
8、模型经过多年的实践检验后仍然被世界各国所接受并加以运用肯定有其存在的合理性。现阶段我们可以运用数理统计软件来推断在我国这两者之间的关系,所以本文在推断两者之间的关系时运用了spss统计软件的非参数统计方法。spss 17.0提供了8种非参数检验方式,而其中的两个独立样本方式适合用于检验本文的数据。 (2)剔除指标权重的主观性,解除变量正态分布的限制。国内外学者在进行财务预警系统建模时主要使用两种方法确定指标的权重,一种是根据专业人员对指标的理解和经验确定其在模型里的影响力;另一种是通过统计分析方法分配权重。本文认为,目前还没有理论能证明财务指标与财务风险之间的关系,在还不清楚之间关系时不适宜通
9、过经验确定指标的权重,所以本文偏重于使用后面一种方法重新确定适合我国情况的指标权重。 (3)引入现金流量指标。原有的z分数主要是以资产负债表和利润表的数据计算的,而在现实中这两个表的数据都很容易受到盈余管理的影响,导致信息失真,预测失败。而目前我国的证券市场还处于发展阶段,法制不是十分健全,企业有动机也有机会进行盈余管理以获得更多的资金,所以要建立一个适合我国的财务预警模型有必要加入现金流量指标。 (4)减少行业差异对模型准确率的影响。大量实证证明,财务指标具有行业差异。以1985年美国各行业负债比率为例,具体见表1: 由表1可见,每个行业正常的资产负债比率是不一样的。公用事业一般都是大型项目
10、,所以负债率较高是比较正常的,这并不影响企业的正常运作;而医药的资金周转周期比较短,所以负债率会相应较低。由此可得,用同一个负债比来衡量不同的企业的经营状况是不合理的,建立财务预警模型的时候应该考虑行业之间的差异。我国也会存在同样的问题,但因为市场条件不一样,我国肯定不能直接引用国外的数据进行建模,必须按照我国情况重新设计。 (二)新建多元线性模型的实证分析 具体过程如下: (1)样本选择与分组。基于研究数据的易获得性,本文选择在2010年沪深证券市场a股上市公司中选取研究样本。根据截止到2010年12月31日的统计资料,沪深两市a股当中一共有64家*st公司。*st公司是连续三年亏损,根据证
11、券市场规定处以退市风险警示的企业,所以本文将这类公司分到失败组作为样本。再根据*st公司2009年末在的资产总额规模(所属行业相同,资金规模相差不超过10%)配对相对应的非st(*st)公司作为正常组样本。由于部分*st公司的资产总额规模太小无法找到合适的配对样本,所以予以剔除。最后,本文选定了其中的44家*st公司和44家非st(*st)公司用来建立判别模型。 (2)指标选取。具体如下: 第一,基础指标的确定。本文要建立的财务预警系统拟从偿债能力、盈利能力、营运能力、稳定性能力和资产质量五个方面综合反映企业财务状况。相关指标的选取参照加入了现金流量后的杜邦评价体系,再参照财务舞弊模型,在原有
12、的z分数模型理念之上加入现金流量指标,使得模型更加完善。 因为本文是在原有的z分数模型上进行改进的,所以模型原有的5个指标均列入候选指标中。本文再借鉴了财务舞弊模型和加入了现金流量指标的杜邦分析体系,选取不容易受盈余管理的指标进行财务预警。所以入选的指标如下:x1=营运资金/资产总额;x2=留存收益/资产总额;x3=息税前利润/资产总额;x4=股东权益的市场价值总额/负债总额;x5=销售收入/资产总额;x6=经营活动现金净流量/(|经营活动现金净流量|+|投资活动现金净流量|+|筹资活动现金净流量|);x7=销售商品提供劳务所收入的现金/主营业务收入净额;x8=(经营活动现金净流量+投资活动现
13、金净流量+筹资活动现金净流量)/资产总额;x9=(经营活动现金净流量资本支出)/资产总额;x10=|(净利润经营活动现金净流量)/资产总额| ;x11=现金盈利值/净利润;x12=经营活动现金净流量/营业利润;x13=非经常性损益/|利润总额| ;x14=自由现金流量/销售收入;x15=自由现金流量/净利润;x16=自由现金流量/营业利润;x17=自由现金流量/股本;x18=自由现金流量/所有者权益;x19=自由现金流量/总资产 。 (2)具体指标的确定。主要如下: 第一,非参数检验。两个独立样本非参数检验是在对总体分布不是很了解的情况下,通过分析样本数据,推断样本来自的两个独立总体分布是否存
14、在显著差异 。本文把失败组成员编号为1,正常组编号为2。在已知分组情况的条件下对88家企业19项指标的值进行非参数检验,检验两组之间19个指标的数值是否有明显的差异。本文一共选用了四种方法对数据进行检验,分别为两个独立样本mann-whitney u检验、极端反应检验、k-s检验和游程检验。 根据检验结果可得,四种方法都表明两组之间的x1、x2存在明显差异;其中有三种方法表明两组之间的x4、x8、x13存在明显差异;只有一种方法表明两组之间的x14、x18存在明显差异,没有方法表明两组之间的x3、x5、x6、x7、x9、x10、x11、x12、x15、x16、x17、x19存在明显差异。 第二
15、,判别分析。根据上一步的结果,进入判别分析的变量共有5个,分别为x1、x2、x4、x8和x13。将预先设置的分组作为依据对5个变量进行判别分析,观察表2组均值的均等性的检验(f检测)中的相伴概率,只有x4的大于0.05的显著性水平,其余变量的相伴概率均小于0.05的显著性水平,为提高模型的正确率需要剔除变量x4,最终确定纳入建模的变量共有四个,分别为x1、x2、x8、x13。 (3)模型构建。剔除x4后对x1、x2、x8、x13再做一次判别分析。见表3,这次模型的正常组误判率为2.3%,正确率为97.7%,模型的综合正确率为78.4% 此时,spss得出的判别分析的判别式函数系数(非标注化)为
16、表4中 x1、x2、x8、x13典型判别式函数非标准化系数,由此得出判别函数式: z=0.5130x1+0.9084x2+1.6560x8-0.1522x13+0.4712 为了方便表示,这里对变量的编号重新编排,所以 z=0.5130x1+0.9084x2+1.6560x3-0.1522x4+0.4712 其中, x1为营运资金/资产总额;x2为留存收益/资产总额;x3为(经营活动现金净流量+投资活动现金净流量+筹资活动现金净流量)/资产总额;x4为非经常性损益/|利润总额| 本文所有公式中的资产总额都是用年初资产总额和年末资产总额的平均值,以去除企业在期末进行盈余管理的影响。单项指标比上资
17、产总额后可以在一定程度上消除该变量由于企业资金规模的不一致造成的影响,增加了不同企业规模之间的可比性。 (4)确定模型的临界值。本文根据费雪准则的判别原理,设模型的临界值为z*(加权平均值) z*= 而z(1)=ckxk(1),z(2)=ckxk(2) 其中,ck为第k个变量的系数,xk(1)为第k个变量在第1组(失败组)中的平均值,xk(2)为第k个变量在第2组(正常组)中的平均值。 根据表5代入数字计算得,z*0.000039(结果保留六位小数),如表6所示。 (5)新建模型的检验。为了检验新建模型对我国上市公司的判别效果,本文将2011年年末的上海证券交易所的市场数据代入新建模型中进行检
18、验。截止至2012年3月12日晚,已经在上海证券交易所公布2011年年度报表的公司共有153家,其中与建模时使用的样本所属行业相同的企业有73家。利用上海证券交易所网站的xbrl系统搜集这73家企业的相关财务数据,分别计算四个变量的值,然后计算出各自的z值。 由表7的分析可见,在73个样本中错判的只有8个,其余的65个是正确的,新建模型的正确达到了89.04%,虽然在判断失败组的正确率不高,而判断正常组的正确率高达93.44%。在检验时使用的数据中只有四家是*st公司,其余都是st公司(含一家sst公司)。st公司是连续两年亏损而被证券交易所特别处理的企业,虽然st公司财务失败的可能性高,但往
19、往可以通过债务重组或者公司改革等一系列措施扭转企业亏损的局面,所以很难对其准确判断,故降低了失败组的判断准确性,但总体而言,新模型的正确率还是让人满意的。 四、新建模型在我国运用的局限性 (一)判断企业财务出现危机标准的局限性 本文中判定*st公司为失败组,而非st公司为正常组,这个判断标准有一些武断,因为我国的证券市场现在仍处于发展阶段,在界定财务危机的标准上设置得还不是很完善。虽然证券交易所会对其挂牌上市的企业的财务状况进行监控,但事实证明,在没有被特别处理的企业中存在着企业财务确实出现问题但尚未被披露的企业,在建模选取样本时若包含了这类企业,则会影响到模型的正确率。 (二)未全面考虑影响
20、企业财务状况的因素 本文研究的指标都是从传统的财务指标中选取出来的,并没有考虑到非财务因素。很多实例证明,员工素质、管理层的设置、奖惩政策的设置等非财务因素都会对企业的业绩造成影响。以上提到的都只是企业内部因素,企业的业绩除了受自身的条件影响外还会受到外部因素的影响,如国家政策、经济环境、法律环境等。如果能考虑得更全面,也许能提供模型的准确率。 (三)样本容量与涉及行业的问题 据统计,沪深两市a股上市公司2009年末共有1860家,2010年末共有2107家,而本文建模时所用的样本只有88家,抽样规模较小,这就降低了模型的代表性。而样本所涉及的行业从大类上说都是属于工业,对于判断其他行业上的代表性不足。 (四)财务数据失真可能性高 我国的证券市场现阶段的法律制度还不是很健全,对企业的财务状况的监控还不够全面。企业为了得到因为上市而获得的高额资金,往往会进行盈余管理,使得公布的财务信息失真。虽然新建模型建立时在一定程度上考虑到了这一点,可以通过观察每个变量的变化情况推断企业是否存在违规行为,但财务资料的失真对建模时的影响还是无法完全避免的。 参考文献: 1edward i. altman. financial rations, discriminate analysis and the
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 旅游景区夜间保安聘用合同
- 办公区照明设施建设合同范本
- 桂林市拆迁与城市地下空间利用
- 贵阳市体育馆停车场使用规范
- 园林绿化车辆司机薪酬政策
- 法律行业学徒实习指南
- 通讯基站墙面施工协议
- 网络公司员工安全守则
- 供应商资质审查规范
- 国际化发展综合办公室管理办法
- 周围神经病变(课件)
- 民航服务心理案例分析
- CR300BF型动车组网络设备及列车控制讲解
- (高清版)JTGT 3371-01-2022 公路沉管隧道设计规范
- 【110kv水电站电气一次部分设计17000字(论文)】
- 第一单元中国特色社会主义的开创、坚持、捍卫和发展单元测试-2023-2024学年中职高教版(2023)中国特色社会主义
- 产后尿潴留的预防及护理
- 世界学生日活动主题班会
- (高清版)TDT 1056-2019 县级国土资源调查生产成本定额
- 校园垃圾收集清运方案
- 人教版八年级上册数学课后习题
评论
0/150
提交评论