升余弦波滤波器_第1页
升余弦波滤波器_第2页
升余弦波滤波器_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、无码间串扰的基带传输直方脉冲的波形在时域内比较尖锐,因而在频域内占用的带宽是无限的。如果让这个脉冲经过一个低通滤波器,即让它的频率变窄,那么它在时域内就一定会变宽。因为脉冲是一个序列,这样相邻的脉冲间就会相互干扰。这种现象被称为码间串扰只要基带传输系统的冲激响应波形h(t)仅在本码元的抽样时刻上有最大值,并在其他码元的抽样时刻上均为0,则可消除码间串扰。即,若对h(t)在时刻t=kTs(这里假设信道和接收滤波器所造成的延迟t0=0)抽样,则应有下式成立:上式(1)称为无码间串扰的时域条件。即,若h(t)的抽样值除了在t=0时不为零外,在其他所有抽样点上均为零,就不存在码间串扰。1.理想低通特性

2、满足奈奎斯特第一准则的有很多种,一种极限情况,就是为理想低通型,即当h(t)等于正负kTs(k不等于0)时有周期性零点,当发送序列的时间间隔为Ts时,正好巧妙地利用了这些零点,只要接收端在t=kTs时间点上抽样,就能实现无码间串扰。令人遗憾的是,虽然理想低通传输特性达到了基带系统的极限传输速率和极限频带利用率,可是这种特性在物理上是无法实现的。而且,它的冲激响应h(t)作为传输波形仍然是不适宜的。2.余弦滚降特性为了解决理想低通特性存在的问题,可以使理想低通滤波器特性的边沿缓慢下降,这称为滚降。只要H(w)在滚降段中心频率处呈奇对称的振幅特性,就必然可以满足奈奎斯特第一准则,从而实现无码间串扰

3、传输。这种设计也可看成是理想特性以奈奎斯特带宽为中心按奇对称条件进行滚降的结果。设计的关键参数是滚降系数。这种系统所占的频带宽,是理想低通系统的2倍。发送数字信号时,通常需要成型滤波器对数字信号0或1进行成型滤波。最常用的一种就是升余弦弦滤波器(RCF),因为它能够消除符号间干扰(ISI)。其频域响应为其中,r为滚降系数(r=0时即为理想低通滤波器brickwallfilter,现实中不可实现。),T为输入符号的符号周期。其时域冲击响应为可见,上式可以用来计算滤波器的系数,这样就可以构造出升余弦滤波器。Matlab中通过命令rcosfir,就可以得到滤波器的系数。但,实际中,接收端也需要一个低通滤波器(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论