二元一次方程组应用题大全_第1页
二元一次方程组应用题大全_第2页
二元一次方程组应用题大全_第3页
二元一次方程组应用题大全_第4页
二元一次方程组应用题大全_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、知识点: 二元一次方程组的概念及解法:代入法和加减法二元一次方程组解决实际问题的基本步骤:1、 审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系)2、 考虑如何根据等量关系设元,列出方程组(设未知数,列方程组)3、列出方程组并求解,得到答案(解方程组)4、检查和反思解题过程,检验答案的正确性以及是否符合题意(检验 ,答)例】今有鸡兔同笼,数头 35 个,数腿 94 条,问鸡、兔各有多少只?分析:两个相等关系:鸡头兔头总头数;鸡腿兔腿总腿数。解析:设鸡有 x 只,兔有 y 只。35x由题意可列方程组解得94y答:鸡有只,兔有只。相似题:鸡兔同笼问题( 1)1、野鸡和兔子共有39

2、只,它们的腿共有100 条,求野鸡和兔子各有多少只。2、已知板凳和木马共有33 个,腿共有101 条。板凳和木马各有多少个?(注:板凳4 条腿,木马3条腿)3、某文艺团体为“希望工程”募捐组织了一场义演。其中成人票每张8 元,学生票每张5 元,共售出1000 张票,共筹得票款6950 元。问成人票与学生票各售出多少张?分析:两个相等关系: ;。4、某校买了甲、乙两种型号的彩电共7 台,花去人民币15900元。已知这两种型号的彩电的价格分别是 3000 元和1300 元,问该校两种彩电各买了多少台?鸡兔同笼问题( 2)1、某校 150 名学生参加数学考试,平均每人55 分,其中及格的学生人均77

3、 分,不及格的学生人均47分。及格、不及格的学生各有多少人?2、一队敌军一队狗,两队并成一队走;脑袋共有八十个,数腿却有二百条;请君仔细算一算,多少敌军多少狗3、现有大人、幼儿共100 人,大人一餐吃4 个面包,幼儿4 人一餐吃一个面包,一餐刚好吃光100 个面包,问大人、幼儿各有几人?分配问题( 1)【例】栖树一群鸦,鸦树不知数;三只坐一棵,五只没去处;五只栖一棵,闲了一棵树;请你列式算,鸦树各几何?分析:两个等量关系:解:设乌鸦有x 只,树有3树的棵数y 棵。5乌鸦的只数;5(树的棵数1)乌鸦的只数。3xx由题意可列方程组) x解得y5 (答:乌鸦有只,树有棵。1、某单位召开会议,安排参加

4、会议人员住宿,若每间宿舍住12 人,便有 34 人没有住处;若每间住 14人便多处 4 间宿舍没人住。求参加会议的人数和宿舍数。分析:两个相等关系: ;。2、将若干只鸡放入若干个笼子中,若每个笼子放4 只,则有1 只鸡无笼可放;若每个笼子放5 只鸡,则有 1 笼无鸡可放,试问有多少只鸡,多少个笼子?3、用一根绳子测水泥柱一周的尺寸,若绳子绕水泥柱4 周,则绳子还多3 尺;若绳子绕水泥柱5 周,则绳子还少2 尺,求绳子及水泥柱一周的长度。分配问题( 2)1、一组学生用一条绳子测一块的长,量12 次,还余80 m 没有量,量14 次,超出地段20 m ,求绳长和地段长。2、在一条马路旁种树,每隔3

5、 米种一棵,到头还剩3 棵树;每隔2.5 米种一棵,到头还缺77 棵树。问马路有多长?树有多少棵?3、有人在林中散步,听到几个强盗在商量怎样分抢来布匹,一名强盗说: “没人分6 匹,但剩下 5 匹。”另一名强盗说:“每人分7 匹,可又少8 匹。”问有几个强盗几匹布?4、现有一批物资运往三峡工地,由铁路装运, 如果每节车皮装50 吨,则还缺 2 节车皮才能把全部物资运走,如果每节车皮多装5 吨,则还可再装200 吨其它物资,问原有多少物资,共有多少节车皮?调配问题【例】甲乙隔河放牧羊,两人相互问数量;甲说得乙羊九只,我羊是你羊二倍;乙说得甲羊八只。两人羊数正相当。请你帮忙算一算,甲乙各放多少羊?

6、分析:两个等量关系:(1)甲羊数 92(乙羊数 9);( 2)乙羊数 8甲羊数 8解:设甲放羊x 只,乙放羊y 只。x92y 9x由题意可列方程组8x8解得:yy答:甲放羊只,乙放羊只。1、甲、乙两盒中各放着一些球,一共有9 个,如果从甲盒中拿出5 个放入乙盒,乙盒的球数是甲盒的2 倍。问甲、乙两盒中原来各放着多少个球?2、某工厂第一车间人数比第二车间人数的4 少 30 人,若从第二车间调 10 人到第一车间,则第一车间5的人数是第二车间人数3 ,求各车间的人数。43、有一大群羊,其中一部分已上山,另一部分还在山下。如果山下的羊中有3 只上了山,则山下的羊是整个羊群的1 ;如果从山上下来 3

7、只羊,则山上、山下的羊就一样多了。问原来山上、山下各有羊多3少只?配套问题【例】某车间有28 名工人,加工生产一种螺栓和螺母,每人每天生产螺栓多少人生产螺栓,多少人生产螺母,才能使生产的螺栓和螺母刚好配套(分析:两个等量关系:(1)加工螺栓的人数加工螺母的人数28;解:设加工螺栓的有x 人,生产螺母的有y 人。12 个或螺母 1 个螺栓要配(2)螺母数18 个,应分配2 个螺母)。2 倍的螺栓数。x由题意可列方程组解得:y答:加工螺栓的有人,生产螺母的有人。1、一个工人一天能生产100 值螺栓或150 只螺帽, 一只螺栓要与2 只螺帽配套,若有工人42 名,问怎样分配,才能使每天生产的螺栓和螺

8、帽刚好配套?2、八年级 A 班同学 50 人,为参加学校举办的迎国庆文艺活动,做一批道具, 每人每天平均做花18 朵,面具 16 个,如果一个面具配两朵花,应分配多少学生做面具,多少学生做花,才能使面具和花刚好配套?3、某车间有62 名工人,生产甲、乙两种零件,每人每天平均能生产甲零件12 个或乙零件23 个,应分配多少人生产甲零件,多少人生产乙零件,才能使每天生产的甲零件和乙零件刚好配套?(每 3 个甲零件和 2 个乙零件配成一套)年龄问题【例】学生问老师: “您今年多大?”老师风趣地说: “我像你这样大时,你才满周岁;你到我这样大时,我已经 37 岁了。”老师和学生的年龄各是多少?分析:两

9、个等量关系:( 1)老师的年龄两人的年龄差1;( 2)学生的年龄两人的年龄差37。解:设老师的年龄为x 岁,学生的年龄为y 岁。x由题意可列方程组解得:y答:老师的年龄为岁,学生的年龄为岁。1、甲对乙说:“当我的岁数是你现在的岁数时,你才4 岁。”乙对甲说:“当我的岁数是你现在的岁数时,你将61 岁。”问甲、乙各多少岁?2、10 年前,小兰妈妈的年龄是小兰年龄的3 倍; 10 年后,妈妈的年龄是小兰年龄的2 倍,问小兰和妈妈现在的年龄各是多少岁?3、已知仙鹤和乌龟是动物中的长寿星,一天鹤父、鹤女与龟祖、龟孙在聊天,它们发现鹤父的年龄是鹤女的2 倍,龟祖的年龄是龟孙的5 倍,它们四位的年龄和的3

10、 倍恰好是900 岁。十年后, 鹤父和鹤女之和的5 倍,加上龟祖、龟孙的年龄也是900 岁,试求它们分别是多少岁?销售问题( 1)【例】某书店向学校推销甲、乙两种素质教育用书,如果原价买这两种书共需1760 元,书店推销时甲种书打了8 折,乙种书打了7.5 折,结果两种书共少要了400 元。问甲、乙两种书原价各需多少钱?分析:两个等量关系:(1)甲种书原价乙种书原价1760;( 2)甲种书折后价乙种书折后价1760 400。解:设甲种书原价为x 元,乙种书原价为y 元。由题意可列出方程组1760x1760 400解得:y答:甲种书原价为元,乙种书原价为元。1、新华书店向某校推销甲、乙两种科普书

11、,如以原价买这两种书共需 880 元,甲种书书店按乙种书书店按 7.5 折销售,结果这两种书共少要了 200 元,问原来买这两种书各需要多少元?8 折销售,2、“五一”黄金周,人民商场女装部推出“全部服装八折”,男装部推出“全部服装八五折”的优惠活动,某顾客买了一套女装和一套男装,优惠前需付700 元,而她实际付款580 元。问男装、女装原价各是多少元?3、某商场搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买甲、乙两种商品,分别抽到七折和九折,共付款 386 元,这两种商品原销售价之和为500 元,问这两种商品的原销售价分别为多少元?销售问题( 2)【例】甲、乙两件服装的成本共500 元,老板

12、为获取利润,决定将甲服装按50的利润定价,乙服装按 40的利润定价。在销售时,应顾客要求,两件服装均按9 折出售。这样商店共获利157 元,求甲、乙两件服装的成本各是多少元?分析:两个变量关系:(1)甲服装的成本乙服装的成本500;( 2)甲服装的售价乙服装的售价500 157。解:设甲服装的成本为 x 元,乙服装的成本为 y 元。500x由题意可列方程组500157解得:y答:甲服装的成本为元,乙服装的成本为元。1、华联商场购进甲、乙两种商品后,甲商品加价50,乙商品加价40作为标价,后适逢元旦商场搞促销活动,甲商品打八折销售,乙商品打八五折销售。某顾客购买甲、乙商品各一件,共付款已知商场共

13、盈利88 元,求甲、乙两种商品的进价。538 元,2、某商场购进甲、乙两种服装后,都加价40标价出售。“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别把标价的八折和九折出售。某顾客购买甲、 乙两种服装共付182 元,两种服装的标价之和为 210 元,求这两种服装的进价和标价各是多少元?3、某商场欲购甲、乙两种商品共20 元,利润率为15,共获利50 件,甲种商品每件进价为35 元,利润率为278 元,问甲、乙两种商品各购进多少件?20;乙种商品进价为增长率问题( 1)销售利润总产值总支出销售利润率总产值总支出100总产值【例】 某工厂去年的利润为200 万。今年总产值比去年增加了的利润为7

14、80 万元。去年的总产值、总支出各是多少万元?解:设去年的总产值为x 万元,总支出y 万元。则有20,总支出比去年减少了10,今年x根据上表可列方程组解得:y答:去年的总产值为万元,总支出万元。1、某企业去年的总收入比总支出多500 万元,今年的总收入比去年增加10,总支出节约15,因此总收入比总支出多800 万元。求去年的总收入和总支出。2、某工厂第一季度生产甲、乙两种机器共台,其中甲种机器产量要比第一季度增产480 台,改进生产技术后,计划第二季度生产两种机器共54410,乙种机器产量要比第一季度增产20。该厂第一季度生产甲、乙两种机器各多少台?3、革命老区百色的某个芒果种植基地,去年结余

15、为 500 万元,估计今年可结余收入比去年高 15,支出比去年低 10,求去年的收入和支出各是多少万元?960 万元,并且今年的增长率问题( 2)1、某校计划向灾区捐赠图书3500 册,实际共捐了4125 册,其中初中生比原计划多捐了20,高中生捐了原计划的115,问该校初、高中生实际各捐赠图书多少册?解:设初中生实际捐了x 册,高中生实际捐了y 册。则有初中生捐书(册)高中生捐书(册)共捐书(册)实际捐书xy5125计划捐书3500x根据上表可列方程组解得:y答:设初中生实际捐了册,高中生实际捐了册。2、某工厂去年的总产值比总支出多500 万元,而今年计划的总产值比总支出多950 万元,已知

16、今年计划总产值比去年增加15,而计划总支出比去年减少10,求今年计划的总产值和总支出各为多少元。储蓄问题【例】小明以两种方式储蓄了压岁钱2000 元,其中一种是年利率为2.25的教育储蓄,另一种是年利率为 3.06的一年期定期存款,一年后共得利息45.99 元,求这两种储蓄各存了多少钱?分析:两个等量关系:(1)两种储蓄共有2000 元;( 2)教育储蓄的利息定期存款的税后利息42.75 元。解:设存一年教育储蓄的钱为x 元,存一年定期存款的钱为y 元。x y2000x由题意可列方程组x 3.06 1 20 y 45.99解得2.25y答:存一年教育储蓄的钱为元,存一年定期存款的钱为元。1、某

17、储户存入银行甲、乙两种利息的存款,共计2 万元,甲种存款的年利率是3,乙种存款的年利率是 1.5,不计利息税,该储户一年共得利息525 元,求甲、乙两种存款各是多少万元?2、小明以两种方式共储蓄了 3000 元教育储蓄,一种的年利率为 2.25,另一种的年利率为 3.06,一年后本息和为 3079.65 元,求每种存款各为多少元?3、王凯以两种方式分别储蓄了 2000 元和 1000 元,一年后全部取出, 扣除利息税后, 可得利息 43.9 元,已知这两种储蓄年利率的和为 3.24,问这两种储蓄的年利率各是百分之几?数字问题( 1)【例】一个两位数,十位上的数字比个位上的数字小1,十位与个位上

18、的数字之和是这个两位数的1 ,5求这个两位数。分析:两个等量关系:( 1)十位数字个位数字1;( 2)十位数字个位数字这个两位数的1 。x ,个位数字为 y 。5解:设十位数字为yx1x1 10x y由题意可列方程组xy解得:y5答:这个两位数为。1、一个两位数,十位上的数字是个位上的数字的3 倍,将个位上的数字与十位上的数字对调后所得的两位数比原来的两位数小18,求这个两位数。2、有一个两位数,个位上的数比十位上的数大5。如果把两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数。3、一个两位数的十位数字与个位数字的和为7,如果这个两位数加45,那么恰好成为个位数字与十位数字对

19、调后所成的两位数,求这个两位数。4、有一个两位数,其值等于十位数字与个位数字之和的4 倍,其十位数字比个位数字小2,求这个两位数。数字问题( 2)【例】两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。已知前一个四位数比后一个四位数大2178。求这两个两位数。分析:设较大的两位数为x ,较小的两位数为y 。在较大的两位数的右边接着写较小的两位数,得到一个四位可表示为;在较大的两位数的左边写上较小的两位数,得到一个四位数可表示为。解:设较大的两位数为x ,较小的两位数为yx由题意可列方程组解得:y答:较大的两位数

20、为,较小的两位数为。1、两个两位数的和是85,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数。已知前一个四位数比后一个四位数大两个两位数。1287。求这2、一个三位数和一个两位数的差为225,在三位数的左边写这个两位数,得到一个五位数,在三位数的右边写上这个两位数,也得到一个五位数。已知前面的五位数比后面的五位数大225,求这个三位数和两位数。3、有一个三位数,现将最左边的数字移到最右边,则比原来的数小45;又已知百位数字的9 倍比由十位数字和个位数字组成的两位数小3,试求原来的三位数。相遇问题我们经常会遇到:甲、乙相向而行,途中

21、相遇的行程问题,这类应用题中存在下面的等量关系:甲走的路程乙走的路程甲走的路程乙走的路程总路程A总路程B【例】甲、乙两人分别从A 、 B 两地相向而行,甲的速度是乙的速度的2 倍,如果 A 、 B 两地相距 90千米,同时出发经过2 小时两人相遇,求甲、乙两人的速度。分析:两个等量关系:(1)甲的速度 2乙的速度;( 2)甲走的路程乙走的路程90 千米解:设甲的速度为x 千米 / 小时,乙的速度为 y 千米 /小时x由题意可列方程组解得y答:甲的速度为千米 /小时,乙的速度为千米 /小时。1、甲、乙两人在一条长400 米的环形跑道上跑步,甲的速度是6 米 /秒,乙的速度是4 米 /秒。两人同时

22、同地反向跑步,经过后两人第一次相遇。2、甲的速度是5 km/h ,乙的速度是6 km/h,甲、乙两人同时出发相向而行,7 h 后相遇,则两地的距离为km。3、甲、乙两人骑自行车同时从相距65 千米的两地相向而行,2 小时后相遇,若甲比乙每小时多骑2.5千米,求甲、乙两人的速度。4、A 、 B 两城相距720 km,普快列车从A 城出发120 km 后,特快列车从B 城开往A 城, 6 h 后两车相遇。若普快列车的速度是特快列车速度的2 ,求普快列车和特快列车的速度。3追击问题我们还会遇到另一类行程应用题,即同时不同地的追击问题,这类问题存在下面的等量关系:两者间的距离先行者走的路程追击者走的路程先行者的路程两者原来相距的路程追击者走的路程【例】甲、乙两人相距8 km ,二人同时出发,同向而行,甲2.5 h可追上乙;相向而行,1 h相遇,二人的速度各是多少?分析:两个等量关系:(1)同向而行时,甲走的路程乙走的路程( 2)相向而行时,甲走的路程乙走的路程8 km8 km解:设甲的速度为x km/h,乙的速度为y km/h。x由题意可列方程组解得y答:甲的速度为km/h ,乙的速度为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论