版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、4.1 空间图形基本关系的认识 。2 空间图形的公理(一)学习目标1。理解空间中点、线、面的位置关系 .理解空间中平行直线、相交直线、异面直线、平行平面、相交平面等概念.3。掌握三个公理及推论,并能运用它们去解决有关问题.4.会用集合语言来描述点、直线和平面之间的关系以及图形的性质。【主干自填】1.空间点与直线的位置关系(1)如果点p在直线a上,记作p。(2)如果点在直线外,记作pa2空间点与平面的位置关系(1)如果点在平面内,记作p。(2)如果点p在平面外,记作p。3.空间两条直线的位置关系(1)平行直线:如果直线和b在同一个平面内,但没有公共点,这样的两条直线叫作平行直线,记作b。(2)相
2、交直线:如果直线a和有且只有一个公共点p,这样的两条直线叫作相交直线,记作b=。(3)异面直线:如果直线a和b不同在任何一个平面内,这样的两条直线叫作异面直线.4.空间直线与平面的位置关系(1)直线在平面内:如果直线a与平面有无数个公共点,我们称直线a在平面内,记作a(2)直线与平面相交:如果直线a与平面有且只有一个公共点,我们称直线a与平面相交于点p,记作a。(3)直线与平面平行:如果直线与平面没有公共点,我们称直线a与平面平行,记作a。5空间平面与平面的位置关系(1)平行平面:如果平面与平面没有公共点,我们称平面与平面是平行平面,记作。(2)相交平面:如果平面和平面不重合,但有公共点,我们
3、称平面与平面相交于直线l,记作=l。6公理经过不在同一条直线上的三点,有且只有一个平面.或简单说成:不共线的三点确定一个平面公理1的推论推论1:经过一条直线和这条直线外一点,有且只有一个平面;推论2:经过两条相交直线,有且只有一个平面;推论3:经过两条平行直线,有且只有一个平面.公理如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).9公理如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.【即时小测】思考下列问题()照相机支架只有三个脚支撑,为什么?提示:不在同一直线上的三点确定一个平面.(2)教室的墙面与地面有公共点,这些公共点
4、有什么规律?提示:这些公共点在同一直线上.(3)把一张长方形的纸对折两次,打开以后,这些折痕之间有什么关系呢?提示:平行2.下列表述中正确的是( )a.空间三点可以确定一个平面b三角形一定是平面图形c.若a,b,c,d既在平面内,又在平面内,则平面和平面重合d四条边都相等的四边形是平面图形提示:b 因为三点不共线时确定一个平面,故a错c中a、b、c、d四点可在与的交线上.d显然错误故选3若点在直线a上,且a在平面内,则m,间的关系为_.提示:m例1 (1)已知,是两个不同的平面,b,是三条不同的直线,若a,b,laa,l=,,那么与的位置关系是_.()如图,在正方体bcd-abc中,哪几条棱所
5、在的直线与直线c是异面直线?解析(1)如图,l上有两点a,b在内,根据公理2,l,又l,则=。(2)棱c,ab,a,dd,ad,a所在的直线与直线bc是异面直线.答案 ()相交 (2)见解析类题通法(1)判断空间直线、平面之间的位置关系要善于根据题意画出示意图,充分发挥空间想象能力,再对位置关系做出判断.(2)对于异面直线,它们“不同在任何一个平面内,也指永远不具备确定平面的条件“分别位于两个平面内的直线”不一定是异面直线,它们可能平行,也可能相交. ()如图,正方体abc-a11cd1的棱b和bc的中点分别是e,f,各棱所在的直线中与直线ef异面的条数是( )a. b6 c. d.1答案 c
6、解析解法一:与ef异面的直线有ad,1d1,a1,d1,ab,d,ab1,d1c1,共8条解法二:正方体的12条棱中有bb,bc,cc1,bc1与ef共面,其余8条棱都与ef异面.(2)已知,,c是三条不同的直线,如果a与b是异面直线,与c是异面直线,那么a与c有怎样的位置关系?并画图说明解 直线与直线的位置关系可以是平行、相交、异面.如图(1)(2)(3).例2如图所示,已知一直线a分别与两平行直线b,c相交,求证:a,,c三线共面证明b,直线b与c确定一个平面.如图,令aba,acb,a,b,.即a,a,b,c三线共面类题通法证明点线共面的常用方法(1)纳入平面法:先确定一个平面,再证明有
7、关点、线在此平面内.()辅助平面法:先证明有关的点、线确定平面,再证明其余元素确定平面,最后证明平面、重合 已知ac,la=a,bb,lcc,求证:直线,b,c和l共面证明证法一:如图,a,b确定一个平面,又a,b=b,l上有两点,b在内,即直线l ,b,l共面.即若a,l确定平面,过l上一点b作ba,则 。同理,过上一点c作ca,则也在a,l确定的平面内.a,b,,l共面.证法二:ab,a,b确定一个平面,又a,ab ,即l c,c,b确定一个平面,而b,cc,b ,即l 。b,l ,,l,而l,与重合,a,b,,l共面.例3 已知abc在平面外,它的三边所在的直线分别交平面于p,q,r(如
8、图).求证:、q、三点共线证明 证法一:ab=p,a,平面。又b平面ab,平面abc.由公理3可知,点p在平面abc与平面的交线上.同理可证q,也在平面abc与平面的交线上.p,q,三点共线.证法二:aar=,直线a与直线确定平面apr又b=,ac=r,平面ar平面pb平面ar,平面ap,bc平面apr。又q直线bc,q平面ap.又q,qr。,q,r三点共线类题通法证明点共线问题的方法证明多点共线主要采用如下两种方法:一是首先确定两个平面,然后证明这些点是这两个平面的公共点,再根据公理3,这些点都在这两个平面的交线上;二是选择其中两点确定一条直线,然后再证明其他的点都在这条直线上. 如图,在正
9、方体abc-a11中,设线段1c与平面ad1交于q,求证:b,,d三点共线.证明d平面abd,1平面a1d1cb,b平面abc1d,平面1d1cb,平面bc1d1平面a1dcbb1。a1c平面ac11=q,且a1c在平面ad1c内,平面1d1cb,平面abd1,q在两平面的交线bd1上,d1三点共线.例4已知:平面,两两相交于三条直线l,2,l3,且,l2,l3不平行.求证:1,l2,l3相交于一点.证明 如图,=l,=l2,=l.l,l2,且l,l不平行,l1与2必相交设l1l2=p,则pl,,p=,l1,l2,l相交于一点p。类题通法证明三线共点的方法证明三线共点常用的方法是先说明其中两条
10、直线共面且相交于一点,然后说明这个点在两个平面上,并且这两个平面相交(交线是第三条直线),于是得到交线也过此点,从而得到三线共点. 已知在正方体abcdacd中,如图,e,分别为,a上的点(e,f不与,b重合)且efcd,求证:cf,d,a三线共点于。证明 由fcd知,,c,d四点共面.e,f不与a,b重合,fc,即四边形efcd为梯形设dec,d平面a,pde,p平面ad.又cf平面abcd,pf,p平面abcd,即p是平面ad与平面的公共点又平面ab平面aadd=ad,pa,即cf,d,a三线共点于.易错点公理及推论的应用中忽略重要条件 典例 已知:空间中a,b,c,d,e五点,b,c,d
11、共面,c,d,e共面,则a,b,c,d,五点一定共面吗?错解a,b,c,共面,点在点b,d所确定的平面内.点b,c,d,e四点共面,点也在点,c,d所确定的平面内,点a,都在点b,c,所确定的平面内,即点a,b,c,d,e一定共面错因分析在证明共面问题时,必须注意平面是确定的.上述错解中,由于没有注意到,,,d三点不一定确定平面,即默认了b,,d三点一定不共线,因而出错.正解 ,c,d,五点不一定共面.(1)当b,d三点不共线时,由公理可知b,c,d三点确定一个平面,由题设知a,e,故,b,c,d,e五点共面于;(2)当b,c,d三点共线时,设共线于l,若a,el,则a,b,c,d,五点共面;
12、若a,e有且只有一点在l上,则a,b,d,e五点共面;若,e都不在l上,则,b,c,d,五点可能不共面.综上所述,在题设条件下,a,b,c,d,e五点不一定共面.课堂小结。在空间中,点看作元素,直线和平面看作点的集合,点与直线、平面,直线与直线,线面及面面之间的位置关系是空间中最基本的位置关系。2.公理1,2,3是在生活实际中,人们对经验和客观实际的总结.公理1的主要作用是论证共面问题;公理2的主要作用是判断直线是否在平面内;公理3是判断两平面是否相交的重要依据.1空间中,可以确定一个平面的条件是( )a.两条直线b.一点和一条直线.一个三角形 .三个点答案 解析 由公理1知:不共线的三点确定
13、一个平面,而三角形的三个顶点一定不共线,故三角形可以确定一个平面2已知平面与平面、都相交,则这三个平面可能的交线有( )条或2条 b.2条或3条c.1条或条d.1条或条或条答案d解析当三个平面两两相交且过同一直线时,它们有1条交线;当平面和平行时,它们的交线有2条;当这三个平面两两相交且不过同一条直线时,它们有3条交线若a表示直线,表示平面,则下列命题中正确的是( )直线a在平面内,即a与有无数个公共点;直线a不在平面内,即直线a与有一个公共点;直线a不在平面内,即直线a与没有公共点;a与的关系可分为a在内或不在内.a. c. d答案c解析 直线a不在平面内,即直线a与平行或相交,无公共点或有一个公共点,故错误,显然正确.4.给出以下命题:和一条
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版某三期护坡桩工程施工过程监测与评估合同4篇
- 2025年度生态地板安装与环保认证服务合同4篇
- 二零二五年度品牌推广电子商务B2B购销数字资产交易合同4篇
- 2025年度文化创意产业聘用员工劳动合同标准文本4篇
- 二零二五年度健康食品品牌形象设计与市场推广合同3篇
- 二零二五年度生态农场果品出口贸易合同4篇
- 二零二五年度家政服务合同中退款条款
- 二零二五年度商业空间面积调整补充合同4篇
- 2025年美发店大数据分析与营销策略合作合同协议书
- 课题申报参考:媒介化加速视域下社交媒体新个体文化的建构与引导研究
- 小学数学知识结构化教学
- 2022年睾丸肿瘤诊断治疗指南
- 被执行人给法院执行局写申请范本
- 饭店管理基础知识(第三版)中职PPT完整全套教学课件
- 2023年重庆市中考物理A卷试卷【含答案】
- 【打印版】意大利斜体英文字帖(2022年-2023年)
- 2023年浙江省嘉兴市中考数学试题及答案
- 【考试版】苏教版2022-2023学年四年级数学下册开学摸底考试卷(五)含答案与解析
- 《分数的基本性质》数学评课稿10篇
- 第八章 客户关系管理
- 新版人教版高中英语选修一、选修二词汇表
评论
0/150
提交评论