命题、证明及平行线的判定定理(基础)知识讲解_第1页
免费预览已结束,剩余8页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、乐博思命题、证明及平行线的判定定理知识讲解【学习目标】1.了解定义、命题的含义,会区分命题的条件(题设)和结论;2. 体会检验数学结论的常用方法:实验验证、举出反例、推理;4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式;5.掌握平行线的判定方法,并能简单应用这些结论. 【要点梳理】要点一、定义与命题1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.要点诠释:(1)定义实际上就是一种规定.(2)定义的条件和结论互换后的命题仍是真命题.2.命题:判断一件事情的句子叫做命题.真命题:正确的命题叫做真命题.假命题:不正确的命题叫做假命题.要点诠释:(

2、1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果那么”的形式,其中“如果”开始的部分是条件,“那么”后面是结论.(2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立.要点二、证明的必要性要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理. 推理的过程叫做证明.要点三、公理与定理1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理. 要点诠释:欧几里得将“两点确定一条直线”等基本事实作为

3、公理.2.定理:通过推理得到证实的真命题叫做定理.要点诠释:证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程.要点四、平行公理及平行线的判定定理1平行公理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质(2)公理中“有”说明存在;“只有”说明唯一(3)“平行公理的推论”

4、也叫平行线的传递性.2平行线的判定定理判定方法1:同位角相等,两直线平行.如上图,几何语言:32abcd(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:12abcd(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:42180abcd(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、定义与命题1请说出下列名词的定义:(1)无理数 (2)直角三角形【答案与解析】解:(1)无理数:无限不循环小数叫做无理数.(2)直角三角形:有一个角是直角的三角形叫做直角三角形.【总结升华】对学

5、过的定义要准确地牢记.举一反三:【变式】指出下列句子哪些是定义.(1)两直线平行,内错角相等;(2)两腰相等的梯形叫等腰梯形;(3)有一个角是钝角的三角形是钝角三角形;(4)等腰三角形的两底角相等;(5)平行四边形的对角线互相平分;(6)连结三角形两边中点的线段叫做三角形的中位线.2说出下列命题的条件和结论,并判断它是真命题还是假命题:(1)如果,那么;(2)如果两个角相等, 那么它们是对顶角.【答案与解析】解:(1)条件:;结论:.它是真命题.(2)条件:两个角相等;结论:这两个角是对顶角.它是假命题.反例,你书的左下角和右下角两个角都是直角,相等,但不是对顶角.【总结升华】要判断一个命题是

6、假命题,只要能够举出一个例子,使之具备命题的条件,而不具备命题的结论,就可以说明这一命题是假命题,这种例子通常称为反例.举一反三:【变式】(2013贵港)下列四个命题中,属于真命题的是().a若,则 b若ab,则ambmc两个等腰三角形必定相似 d位似图形一定是相似图形类型二、公理、定理及证明3证明:等角的余角相等【思路点拨】如果题目中没有明确指出“条件”和“结论”,应先写出已知、求证、证明,如果需要的话并画出图形,再证明.【答案与解析】已知:12,1+390,2+4=90.求证:34.证明:1+3=90,2+4=90,(已知)3=90-1,4=90-2.(等式的性质)1=2(已知),3=4(

7、等量代换).【总结升华】“等角的余角相等”与“等角的补角相等”可以作为今后证明的依据此外,在等式或不等式中,一个量可以用它的等量来代替,简称为“等量代换”.举一反三:【变式】“垂线段最短”是( ).a定义 b定理 c公理 d不是命题类型三、平行线的判定定理4. (2016淄博)如图,一个由4条线段构成的“鱼”形图案,其中1=50,2=50,3=130,找出图中的平行线,并说明理由【思路点拨】根据同位角相等,两直线平行证明obac,根据同旁内角互补,两直线平行证明oabc【答案与解析】解:oabc,obac1=50,2=50,1=2,obac,2=50,3=130,2+3=180,oabc【总结

8、升华】本题考查的是平行线的判定,掌握平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键举一反三:【变式】(2015宁城)如图,下列能判定abcd的条件有()个(1)b+bcd=180;(2)1=2;(3)3=4;(4)b=5a1b2c3d45.(2015日照期末)如图,abcd,ae平分bad,cd与ae相交于f,cfe=e求证:adbc【答案与解析】证明:ae平分bad,1=2,abcd,cfe=e,1=cfe=e,2=e,adbc【总结升华】主要考查角平分线的性质以及平行线的判定定理【高清课堂:平行线及判定 例5】举一反三:【变式】已知,

9、如图,efeg,gmeg,1=2,ab与cd平行吗?请说明理由【典型例题】类型一、定义与命题1说出下列命题的条件和结论,并判断它是真命题还是假命题:(1)在同一个三角形中,等角对等边;(2)两角和其中一角的对边对应相等的两个三角形全等;(3)有两边对应成比例,且有任意一角对应相等的两个三角形相似.【答案与解析】解:(1)先把这个命题写成“如果那么”的形式:如果在同一个三角形中,有两个角相等,那么这两个角所对的边也相等.条件:同一个三角形中的两个角相等;结论:这两个角所对的两条边相等.它是真命题.(2)原命题可以写成:如果两个三角形有两个角和其中一角的对边对应相等,那么这两个三角形全等.条件:两

10、个三角形有两个角和其中一角的对边对应相等;结论:这两个三角形全等.它是真命题.(3)原命题可以写成:如果两个三角形两边对应成比例,且有任意一角对应相等,那么这两个三角形相似.条件:两个三角形两边对应成比例,且有任意一角对应相等;结论:这两个三角形相似.它是假命题,反例:如下图:【总结升华】要判断一个命题是假命题,只要能够举出一个例子,使之具备命题的条件,而不具备命题的结论,就可以说明这一命题是假命题,这种例子通常称为反例.举一反三:【变式】下列语句中,哪些是命题,哪些不是命题,如果是命题的话,请指出是真命题还是假命题? (1)三角形的三条高交于一点;(2)解方程; (3)123.【变式2】下列

11、真命题的个数是 ( )(1)直线a、b、c、d,如果ab、cb、cd,则ad.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行 a1个 b .2个 c3个 d4个类型二、公理、定理及证明2证明:对顶角相等.【思路点拨】如果题目中没有明确出“条件”和“结论”,应先写出已知、求证、证明,如果需要的话并画出图形,再证明.【答案与解析】已知:如图,直线ab,cd相交于点o,1和2是对顶角.求证:12.证明:1和2是对顶角(已知),oa与ob互为反向延长线(对顶角的意义).aob是平角

12、(平角的定义).同理,cod也是平角.1和2都是aoc的补角(补角的定义).12(等角的补角相等).【总结升华】“对顶角相等”是一个定理,而不是公理.举一反三:【变式】证明:相似三角形的周长比等于相似比类型三、平行公理及平行线的判定3.(2015春无锡)一副直角三角板叠放如图所示,现将含45角的三角板ade固定不动,把含30角的三角板abc绕顶点a顺时针旋转(=bad且0180),使两块三角板至少有一组边平行(1)如图,= 时,bcde;(2)请你分别在图、图的指定框内,各画一种符合要求的图形,标出,并完成各项填空:图中= 时, ;图中= 时, 【思路点拨】(1)利用两直线平行同位角相等,并求

13、得=4530=15;(2)利用平行线的性质及旋转不变量求得旋转角即可【答案与解析】解:(1)图中=15时,bcde,bcde,1=b=60,1=d+,d=45,=15=cadcab=4530=15(2)图中=60时,bcda,bac=30,=60,dac=90=c,dac+c=180,bcda;图中=105时,bcea=105,dae=45,eab=60,b=60,eab=b,bcea故答案为:(1)15;(2)60;bc;da;105;bc;ae举一反三:【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) a第一次向左拐30,第二次向右拐30 b第一次向右拐50,第二次向左拐130 c第一次向右拐50,第二次向右拐130 d第一次向左拐50,第二次向左拐1304.(2016春太仓市期末)如图,四边形abcd中,a=c=90,be平分abc,df平分adc,则be与df有何位置关系?试说明理由【思路点拨】根据四边形的内角和定理和a=c=90,得abc+adc=180;根据角平分线定义、等角的余角相等易证明和be与df两条直线有关的一对同位角相等,从而证明两条直线平行【答案与解析】 解:bedf理由如下:a=c=90,abc+adc=180be平分abc,df平分adc,1=2=abc,3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论