二阶导数意义_第1页
二阶导数意义_第2页
二阶导数意义_第3页
二阶导数意义_第4页
二阶导数意义_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二阶导数的意义二阶导数就是对一阶导数再求导一次, 意义如下: (1)斜线斜率变化的速度,表示的是一阶导数的变化率(2)函数的凹凸性。 (3)判断极大值极小值。结合一阶、二阶导数可以求函数的极值。当一阶导数等于零,而二阶导数大于零时,为极小值点;当一阶导数等于零,而二阶导数小于零时,为极大值点;当一阶导数、二阶导数都等于零时,为驻点。一、用二阶导数判断极大值或极小值定理设在二阶可导,且(1) 若,则在取得极大值;(2) 若,则在取得极小值例 试问为何值时,函数在处取得极值?它是极大值还是极小值?求此极值解 由假设知,从而有,即又当时,且,所以在处取得极大值,且极大值例 求函数的极大值与极小值解

2、在上连续,可导令 ,得 和,思考: 在取得极大还是极小值?在取得极大还是极小值?-1代入二阶导数表达式为-12,在取得极大值 3代入二阶导数表达式12,在取得极小值三、函数图像凹凸定理 若在内二阶可导,则曲线在内的图像是凹曲线的充要条件是,曲线在内的图像是凸曲线的充要条件是,。几何的直观解释:如果如果一个函数f(x)在某个区间I上有恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。. 曲线的凸性对函数的单调性、极值、最大值与最小值进行了讨论,使我们知道了函数变化的大致情况但这还不够,因为同属单增的两个可导函数的图形,虽然从

3、左到右曲线都在上升,但它们的弯曲方向却可以不同如图11中的曲线为向下凸,而图12中的曲线为向上凸 图 11 图 12定义4.5.1 设在内可导,若曲线位于其每点处切线的上方,则称它为在内下凸(或上凹);若曲线位于其每点处切线的下方,则称它在内上凸(或下凹)相应地,也称函数分别为内的下凸函数和上凸函数(通常把下凸函数称为凸函数)从图11和图12明显看出,下凸曲线的斜率(其中为切线的倾角)随着的增大而增大,即为单增函数;上凸曲线斜率随着的增大而减小,也就是说,为单减函数但的单调性可由二阶导数来判定,因此有下述定理定理4.5.1 若在内二阶可导,则曲线在内下凸(凹函数)的充要条件是 例1 讨论高斯曲线的凸性解 ,所以当,即当或时;当,即当时因此在区间与内曲线下凸;在区间内曲线上凸四川高考数学2006理22压轴题22,已知函数,证明f(x)的导函数f(x)对于任意两个不相等的正数x1,x2,当时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论