下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第七章三角形【知识要点】一.认识三角形1. 关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。2. 三角形的分类: 三角形按角的大小分为三类:锐角三角形、直角三角形、钝角三角形。 三角形按边分为两类:等腰三角形和不等边三角形。2. 关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比校线段的长短根据公理两点之间,线段最短”可得: 三角形任意两边之和大于第三边。 三角形任意两边之差小于第三边。3. 与三角形有关的线段:三角形的角平分线、中线和高 三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点
2、与对边中点的线段,三角形任意一条中线将三角形分成面积相等的 两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。注意:三角形的角平分线、中线和高都是线段,不是直线,也不是射线; 任意一个三角形都有三条角平分线,三条中线和三条高; 任意一个三角形的三条角平分线、三条中线都在三角形的部。但三角形的高却有不同的位置:锐 角三角形的三条高都在三角形的部;直角三角形有一条高在三角形的部,另两条高恰好是它两条直角边; 钝角三角形一条高在三角形的部,另两条高在三角形的外部。 一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。(三 角形的三条高(或三条
3、高所在的直线)交与一点,锐角三角形高的交点在三角形的部,直角三角形高的交 点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。)4. 三角形的角与外角(1)三角形的角和:180引申:直角三角形的两个锐角互余; 一个三角形中至多有一个直角或一个钝角; 一个三角中至少有两个角是锐角。(2)三角形的外角和:360(3)三角形外角的性质: 三角形的一个外角等于与它不相邻的两个角的和;一一常用来求角度 三角形的一个外角大于任何一个与它不相邻的角。一一常用来比较角的大小5. 多边形的角与外角多边形的角和与外角和(识记)正n边形34568101215角和1803605407201080144018
4、002340外角和360360360360360360360360每一个角(一 2)180。或甌。_ 360。nn6090108120135144150158每一个外角 时-2)180。或 360。nn12090726045363022word格式版木(1)多边形的角和:(n-2) 180(2)多边形的外角和:360。引申:(1)从n边形的一个顶点出发能作(n-3)条对角线;(2)多边形有川“一引条对角线。2(3)从n边形的一个顶点出发能将n边形分成(n-2)个三角形; 探6.镶嵌(1)同一种正三边形、正四边形、正六边形可以进行平面镶嵌;(2)正三角形与正四边形、正三角形与正六边形可以进行平面
5、镶嵌;(1)同一种任意三角形、任意四边形可以进行镶嵌。【典型例题】三角形的分类例题1:具备下列条件的三角形中,不是直角三角形的是(B )A: ZA+ZB=ZC B: ZA=ZB= ZC C: ZA=90 -ZB D: ZA-ZB-90例题2:等腰三角形一腰上的高与另一腰的夹角为30。,则顶角的度数为(D ).A. 60B. 120C. 60 或 150D. 60 或 120如图,Z1+Z2+Z3+Z4等于多少度;(280)练习:1, 如图,下列说法错误的是(A )A, ZB ZACDB、ZB+ZACB =180 -ZAC、ZB+ZACB ZB2、若一个三角形的一个外角小于与它相邻的角,则这个三
6、角形是(C ).A、直角三角形B、锐角三角形C、钝角三角形D、无法确定三角形的角和、外角和相关的计算与证明例题1:若三角形的三个外角的比为3: 4: 5,则这个三角形为(B ).A.锐角三角形 B.直角三角形 C.等边三角形D.钝角三角形例题2:已知等腰三角形的一个外角为150 ,则它的底角为 .练习:1、如图,若ZAEC=100 , ZB二45 , ZC=38 ,则ZDFE 等于(A )A. 125 B. 115 C. 110 D. 1053、如图,则Z1已 Z2=_Z3=_4、已知等腰三角形的一个外危是120。,则它是(C )word格式版木A.等腰直角三角形B. 一般的等腰三角形 C.等
7、边三角形D.等腰钝角三角形5, 如果三角形的一个外角和与它不相邻的两个角的和为180 ,那么与这个外角相邻的角的度数为(C )A. 30B. 60C. 90D. 1206, 已知三角形的三个外角的度数比为2:3:4,则它的最大角的度数(D ).A. 90B. 110C. 100D. 120例7如图(1)所示,中,的平分线交于点,求证:.(1)(2)(3)变式1:如图(2)所示,中,角和外角的平分线交于点,求证:.变式2:如图(3)所示,中,外角的平分线交于点,求证:.分析:本题已知的角平分线和外角平分线,从而想到可利用三角形角平分线的性质,三角形的角和 定理以及外角与角的关系证题。解答:如图(
8、1) , .在中,又的平分线交于点,Z1 + Z2+= 2(180。-厶)=90。一2 2 2在bEOC 中,ABOC = 180- (XI+Z2) = 180- (90Q-AA) =90+24 变式1: .是的一个外角,.平分,平分,且是的外角,,即变式2:在中,在中,.平分,且三点共线,同理可证180。_ 厶*U 180-ZCBZl + Z2 =+2 2ZOC = 180-(Z1 + Z2) = 180-(90 + 丄厶4)=夕 0。一丄厶例5.已知:如图,在中,分别是边上的高,相交于,求的度数。分析:由已知可求,在中,故先求和。解答:设,则,解得word格式版木为边上的高, .在中,同理
9、在中,例题1:若一个多边形的角和与外角和相等,则这个多边形是(A )A.三角形B.六边形C.五边形D.四边形B多边形每增加一条边,角和就增加180。例题2:下列说法错误的是(A ) A.边数越多,多边形的外角和越大C.正多边形的每一个外角随着边数的增加而减小 D.六边形的每一个角都是120。 例题3: 个多边形角和与其中一个外角的总和为1360这个多边形的边数为 9 例题4: 一个多边形的每一个外角都是24 ,则此多边形的角和(B )A. 2160 B. 2340 C. 2700 D. 2880练习:1. 一个多边形角和是1080,则这个多边形的边数为(B )A. 6B、 7C、 8D、 92
10、 个多边形的角和是外角和的2倍,它是( C )A. 四边形 B、五边形 C、六边形 D、 八边形3. 一个多边形的边数増加一倍,它的角和增加(A )A. 180B. 360C 5一2) 180 D. n 1804、若一个多边形的角和与外角和相加是1800 ,则此多边形是(B )A、八边形 B、十边形 C、十二边形D、十四边形5、正方形每个角都是90。,每个外角都是 90 o6、多边形的每一个角都等于150。,则从此多边形一个顶点出发引岀的对角线有 条。7、正六边形共有条对角线,角和等于 720,每一个角等于120。8、角和是1620的多边形的边数是_。9、如果一个多边形的每一外角都是24 ,那
11、么它是15 边形。10、将一个三角形截去一个角后,所形成的一个新的多边形的角和180或360 。11、一个多边形的角和与外角和之比是5: 2,则这个多边形的边数为_卫_。12、一个多边形截去一个角后,所得的新多边形的角和为2520。.则原多边形有15或16或17 条边。13、已知一个十边形中九个角的和的度数是1290%那么这个十边形的另一个角为150 度.考点六:镶嵌 例题1:装饰大世界出售下列形状的地砖:正方形;长方形;正五边形;正六边形。若只选购其中某一种地砖级嵌地面,可供选用的地砖有(B)A B.C.D.例题2:边长相等的下列两种正多边形的组合,不能作平面镶嵌的是(B )A.正方形与正三
12、角形 B.正五边形与正三角形C.正六边形与正三角形D.正八边形与正方形练习:L下列正多边中,能铺满地面的是(B )word格式版木A、正方形 B、正五边形 C、等边三角形 D、正六边形2. 下列正多边形的组合中,不能够铺满地面的是(D ).A.正六边形和正三角形B.正三角形和正方形C.正八边形和正方形D.正五边形和正八边形3. 用正三角形和正十二边形镶嵌,可能情况有(B )种.A, 1 B, 2 C、 3 D、 44. 某装饰公司出售下列形状的地砖:正方形;长方形;正五边形;正六边形若只选购其中某一 种地砖镶嵌地面,可供选用的地砖共有(C )种.A. 1 B、 2 C、 3 D、 45. 小家装修地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正多边形地砖,与正三角形 地砖在同一顶点处作平面镶嵌,则小不应购买的地砖形状是(C )A、正方形B、正六边形C、正八边形 D、正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 44779-2024国际贸易业务流程规范购买-运输-支付参考数据模型
- pwc -引领未来的数字化领导力模型
- 海-气相互作用和环流异常(讲义)-2025年高考地理一轮复习
- 2024年文教体育用品项目投资申请报告代可行性研究报告
- 2023年炮塔式铣床资金筹措计划书
- 强化管理-有效教育-交通安全-常抓不懈1
- 经济数学-教学日历
- Python程序设计实践- 习题及答案汇 张银南 ch01-21 Python程序设计实验的目的与要求- 中文词云
- 关于青春无悔演讲稿范文分享(33篇)
- 设计单元教学计划
- 99版-干部履历表-A4打印
- 现患率调查汇总表
- 低压电缆测绝缘施工方案
- 电动机基础知识介绍
- 鱼塘所有权证明
- 重点实验室汇报
- 医疗器械自查表【模板】
- 1999年制干部履历表
- 健康管理学教学大纲
- 公路施工安全技术交底资料(完整版)
- 《传感器原理与应用》教案
评论
0/150
提交评论