版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、、选择题:本大题共的.2019年普通高等学校招生全国统一考试1数学(理科)12小题,每小题5分在每个小题给出的四个选项中,只有一项是符合题目要求1 .设集合A x| 1x 3 , B x|log2x 1,则下列运算正确的是(A AI B AB. AU B A C . AI BD AU B R2 如图所示是一个长方形,其内部阴影部分为两个半圆,在此圆形中任取一点,则此点取自阴影部分的概率为()3B .16C.3 已知条件p :厂2 .1 2x 0,条件q :1冬8x 10,贝U p是q成立的()x 1D. 116A .充分不必要条件B 必要不充分条件C 充要条件D.既不充分也不必要条件4 已知数
2、列an是公比为q的等比数列,且a3, a2成等差数列,则公比 q的值为()C.65若(x 2y)的展开式中的二项式系数和为1D .1 或一22 4Px y的系数为P,则一为( )S152C.120D 240如果一个几何体的三视图如图所示(单位长度:cm ),在此几何体的表面积是((204.2)cm 22B. 21cm(244.2)cm 2D . 24cm27 .已知函数f(x)是定义在R内的奇函数,且f (x 1)是偶函数,若 f( 1)2,则 f(2017)为(C. 2C. 63B . 31S的值是()8如图是一个算法的流程图,则输出A. 15D . 127g(x).3 sin( x)cos
3、( x )2,则 g()的值是(3C. 2或410 .若则下列不等式成立的是()abC.-a c b cbcD . log a c log b c211 .抛物线x 4y的焦点为过F作斜率为的直线l与抛物线在3y轴右侧的部分相交于点 A ,过点A作抛物线准线的垂线,垂足为H,贝U AHF的面积是(C.4,312 .已知递增数列an对任意n N均满足anN,aan3n ,记bna23n 1 ( n N ),则数列bn的前n项和等于(2n 1 1C.n 13 3n24小题,二、填空题:本大题共UUU.已知向量AB (1, 4),13每小题5分.UUUTBD (2,1),uuirAD(m,n),则
4、m14y.设实数x, y满足x2x2 0,x20,则0,的取值范围是15.已知F是双曲线C :2 y b21(a 0,b 0)的一个焦点,O为坐标原点,M是双曲线C上一点,16MOF是等边三角形,则双曲线C的离心率等于.如图,在三棱锥A BCD中,BC DC AB AD .2 , BD 2,平面 ABD 平面 BCD , O为BD的中点,P , Q分别为线段 AO , BC上的动点(不含端点),且AP CQ,则三棱锥P QCO体积的最大值为三、解答题:解答应写出文字说明,证明过程或演算步骤.17 .已知在 ABC中,A, B, C所对的边分别为 a,b, c,且有acosB b cos A .
5、 2ccosC 0 .(1)求角C的大小;(2 )当c 2时,求S ABC的最大值.18 .如图,底面ABCD是边长为3的正方形,DE 平面ABCD , AF / DE , DE 3AF , BE与平 面ABCD所成角为60.(1)求证:AC 平面BDE ;(2 )求二面角F BE D的余弦值.19 .为了解学生对“两个一百年”奋斗目标、实现中华民族伟大复兴中国梦的“关注度”(单位:天),某中学团委组织学生在十字路口采用随机抽样的方法抽取了80名青年学生(其中男女人数各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组青年学生的月 “关注度”分为6组:0,5) , 5,10),10,
6、15) , 15,20) , 20,25) ,25,30,得到如图所示的频率分布直方图.(1) 求a的值;(2) 现从“关注度”在 25,30的男生与女生中选取 3人,设这3人来自男生的人数为 ,求 的分布列与期望;(3 )在抽取的80名青年学生中,从月“关注度”不少于25天的人中随机抽取 2人,求至少抽取到 1名女生的概率.2 220 .已知椭圆务占 1(a ba b0)的焦点分别为 R( c,0) , F2(c,0),离心率e丄,过左焦点的直线28与椭圆交于 M,N两点,|MN| ,且2sin MF2N3sin MNF2 sin NMF2 .(1)求椭圆的标准方程;(2)过点D(4,0)的
7、直线I与椭圆有两个不同的交点A, B ,且点A在点D, B之间,试求 AOD和BOD面积之比的取值范围(其中0为坐标原点).a21 已知函数 f (x) Inx (a R).x(1 )判断函数f(x)在区间e2,)上零点的个数;(2)当 a1时,若在1,e ( e 2.71828)上存在一点x。,使得X。丄 mf(x。)成立,求实数mXo的取值范围.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题计分.做答时请写清题号.22 .(本小题满分10分)选修4 4 :坐标系与参数方程在平面直角坐标系xOy中,已知曲线C : x 3cos ,(为参数),以原点0为极点,x轴的正半轴 y
8、 sin为极轴建立极坐标系,直线I的极坐标方程为cos(1)在给出的平面直角坐标系中作出函数f (x)的图象,并写出不等式f(x) 3的解集(不要求写出解题(1)求曲线C的普通方程和直线I的直角坐标方程;(2)过点M( 1,0),且与直线I平行的直线I1交曲线C于代B两点,求点M到A, B两点的距离之积.23 .(本小题满分10分)选修4 5 :不等式选讲已知函数f(x) 2x 1 x 2 .过程);1 1(2 )若不等式f (x)(m 0,n0)对任意的x R恒成立,m n求m n的最小值.2019年普通高等学校招生全国统一考试1数学(理科)答案题号123456789101112答案BBAC
9、BADCDDCD、选择题:本大题共 12小题,每小题5分.A.1 【解析】x 2 , AU BB x|03 22 【解析】(2)24 33 【解析】.1 2x0 ,2x1 2x4 .【解析】5.【解析】0 , 2a3a1a2, 2q212q2 q 1二项式(x62y)的展开通项Tr 1C;x6 r(2y)r ,令 6 r 2,解得 r 4.展开式中x2y4的系数为P C;( 2)42415 .24 151546 【解析】该几何体为一个正方体和一个四棱锥组成,此几何体的表面积是 5 224 1 2.2204 2 .27 .【解析】T f ( x)f(x) , f(x 1) f ( x 1) ,
10、f(x 4)f (x),函数f(x)的周期为4 .9 .【解析】T f ( x) f (-3x),f (2017) f (1) f( 1)2 .8 .【解析】由程序框图可知:S 137153163n12345- f (x)关于 x 对称f () 2cos()2 ,333- cos()1 ,3g(:) 、3si n(3310 .【解析】T logac)cos(3logbClogca2 cos(31 log/ logc alogcblogcalogcb11 .【解析】直线l的方程为yy1,由y2x.3x34y吩的值是2或4 .0 , log a cx0,解得ylogbC. AH 3SAHF 2xA
11、AH 4 方12 【解析】anaan3n,aa13数列a.单调递增, ai1, a1aa, -H-右a1ai31,矛盾;若a12,则 a2aa13,成立;右a1a3aa13 a1,矛盾;综上,a12,则 a2当 aaan3aana3n,a3n3aan bna2 3n 1a32 3n 23a2 3n 2 bn 1 ,电3 bn 1bn的前n项和等于沁1 33(3n 1)2、填空题:本大题共4小题,每小题5分.13.014 4,2153 1165uuur uuu uuu13【解析】 (m, n)AD AB BD(3,3) , m 3,n3,14【解析】由约束条件作出可行域如图,3为首项,3为公比的
12、等比数列,数列bn是以ba22x4820,解得 B(2,6) .m n 0 y从图可知A(2,0) 由yxx y 2 x 3 y 1x 3x 3y 1的几何意义为可行域内的动点与定点(3,1)连线的斜率.x 3k k 1 5y 11h 5,1,-笛的取值范围是4,2 515 【解析】MOF是等边三角形,M(?2-c)代入笃a2 y b2得e 8e16 【解析】易证AO 平面BCD ,AO.ri设APx(0S QCO OC CQ sin2x ,244VP QCO- S3QCOOP tx(112x)三、解答题:解答应写出文字说明,证明过程或演算步骤.17 【解析】(1 )由acosB b cos
13、A2c cos C 0及正弦定理,得 si nAcosB sin B cos A ,2s in CcosC 0 ,xty-2=01) 吕(x 2)12 2在ABC 中,0 A,0 C , sin A 0 cosC 2(2)由余弦定理,得c2a2 b2 2ab cosCa2 b22ab,即 4b2- 2ab (2. 2) ab ,故ab4.2 2(22),当且仅当a b4 2辽时,取等号.-S ABC1 abs inC222(2 2)子 12, 即s ABC的最大值为118 (1 )证明: DE 平面 ABCD , AC 又底面ABCD是正方形, AC平面 ABCD , DE BD BDI DE
14、 D , ACAC ,平面BDE (2) DA , DC , DE两两垂直,.建立如图所示的空间直角坐标系D xyz, BE与平面ABCD所成角为60,即 DBE 60 , 史 ,3 , DB由 AD 3,可知 BD 3 2,DE 3.6,AF 6 则 A(3,0,0),F(3,0, , 6),E(0,0,3、6) , B(3,3,0),uuu BF(0,- uuu3,、6) , EF(3,0, 2 6) 设平面BEF的一个法向量为(x, y, z),uuu BF uuu EF0,即0,3y . 6z3x 2,6z0,令z . 6,则n0,/ ACuuu平面BDE , CA为平面uuuBDE的
15、一个法向量, CA(3,3,0),二 cosnun,CAuur|n CAj|n| |CA| 3.2 ,261313二面角F BED为锐角,二面角FBE D的余弦值为.13130.08 0.02) 5 5(2)从频率分布直方图可知在 25,30内的男生人数为0.02 519 【解析】(1 )a 1(.。1 01.31 0.15 50.05 540 4 人,女生人数为0.01C:c;C故 P( 1)5 40 2人,男女生共6人,因此的取值可以为1,2,3 ,1-,P( 2)53,p( 3)5123的分布列为3数学期望E( )1 2 32.5 555(3 )记“在抽取的80
16、名青年学生中,从月“关注度”不少于 25天的人中随机抽取 2人,至少抽到1 名女生”为事件A, 在抽取的女生中,月“关注度”不少于 25天即在25,30内的人数为2,在抽取的男生中,月“关注度”不少于 25天即在25,30内的人数为4 ,则在抽取的80名学生中,共有6人月2所有可能的结果有 C615种,而事件“关注度”不少于 25天,从中随机抽取 2人,A包含的结果有c2c4 C29种, P(A)詈20 【解析】(1 )在 MF2N中,由正弦定理,得 2|MN | IMF2 | INF2I , 由椭圆定义,得 | MN | MF? | NF21 4a ,二 4a 3| MN | 8,故 a 2
17、.1 222x又e ,二c 1 , b a c 3,-椭圆的标准方程为 一2 4(2 )依题意,知直线故设直线I的方程为X2y3(3m2m2l的斜率存在且不为 0,myx2与椭圆方程4消去x整理,得由 0,解得1联立,4)y24 .24my360 ,y1y2设 A(x1, y1),B(X2, y2),则y1y224m3m 4可知y1, y2同号,36 J43 m2令仏,则S BOD1JODI |yj1 jODI|y21y2将y1y2代入韦达定理,得消去y,得1)2(1)y22y224m3m24363m242由m 4,得(10又 01,且316m23m241,即31013 0 ,解得3,即224
18、(1)m21034(1)23 2 31,二21 .【解析】(1 )令 f (x) In x -0 , x e 2,),得 a xln x .x记 H (x) x In x , x e 2,),则 H (x)1 In x ,2 1 1由此可知H (x)在区间 e ,e上单调递减,在区间(e ,)上单调递增,且 H(e 2)又 H (e) e2e2 0, H(e 1)e 1 0 .1 20,故当a 时,f (x)在区间e2,)上无零点. e1当a 或aet 21当飞 a 时,ee勺时,f(x)在区间e 2,)上恰有一个零点. ef (x)在区间e 2,)上有两个零点.(2)在区间1,e12.71828)上存在一点x0,使得x()mf(x)成立等价于函数Xoh(x) xmf (x)h(x)1当m 1x 丄 xe,即卩mm m2x xe1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国十大名茶公开课
- CO2压裂液介绍特训
- 3月全国计算机等级考试考务工作培训
- 北半球冬夏气压中心
- 基本公共卫生服务项目信息直报系统介绍课件
- 初聘专业技术职务呈报表
- 情感的记录 课件 2024-2025学年苏少版(2024)初中美术七年级上册
- 2024年初级招标采购从业人员《招标采购专业实务》考前必刷必练题库600题(含真题、必会题)
- 2024年度个人工作总结范文二
- 辽宁省鞍山市海城市西部集团2024-2025学年九年级上学期12月第三次质量监测化学试题含答案
- 颅内感染的护理查房
- 高中数学-人教电子版课本
- MOOC 摄影艺术概论-浙江工商大学 中国大学慕课答案
- 2024年上海市杨浦区高三二模英语试卷及答案
- 全过程工程咨询服务造价咨询服务方案
- 胃癌中医护理方案
- 职业技术学院老年大学建设方案
- 品管圈-降低留置胃管病人非计划性拔管率课件
- DB3205-T 1108-2024 苏式传统文化 苏作家具制作与传承指南
- 成语故事详解:暗箭伤人
- 告别抄袭自强自立课件
评论
0/150
提交评论