版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、九年级九年级上册上册 待定系数法求二次函数的解析式待定系数法求二次函数的解析式 ? 待定系数法求一次函数解析式 (0)ykxbk? 两个参数 k,b,需要_个点的坐标, 列_ 解 (两点的连线不与坐标轴平行) 2 ? 待定系数法求二次函数解析式 2 (0)yaxbxca? _个参数_,需要_个点的坐标,列 _ 求解(这三点不共线) 3a,b,c3 三元一次方程组 二元一次方程组 1一般式一般式 例1:已知一个二次函数的图象经过( -1,10), (1,4),(2,7)三点,试求出这个二次函数的解 析式 2 (0)yaxbxca? 解:设所求二次函数为 y = ax 2 + bx + c (a0
2、) 函数图象经过( -1,10),(1,4),(2,7) 三点,得关于 a,b,c 的三元一次方程组 解得 所求的二次函数是 y = 2x 2 - 3x + 5 10 4 427 abc abc abc ? ? ? 2 3 5 a b c ? ? ? 练习:练习: 一个二次函数的图象经过点( -1,-1),(1,3), (2,6).求这个二次函数的解析式。 如果知道抛物线的 顶点和另一个点,是否可以确 定解析式? 2顶点式 2 ()ya x hk? 例2:一个二次函数图象的顶点为( 1,-4)且图象过 点(2,-3),求这个二次函数的解析式 解:二次函数图象的顶点为( 1,-4), 设所求二次
3、函数解析式为 二次函数图象经过点( 2,-3), 解得a = 1 所求的二次函数的解析式是 2 4)(01)yxaa? 2 (21)43 a ? ? ? 2 (1)4yx? 解: 抛物线的顶点为( -1,-3), 设所求的二次函数的解析式为 y=a(x1)2-3 (a0) 练习: 已知抛物线的顶点为(1,3),与y轴 的交点为(0,5),求抛物线的解析式。 点(0,-5 )在这条抛物线上, 解得 所求的抛物线解析式为y=2(x1)2-3 2 (01)35 a ? ? ?2a ? ? 例例3要修建一个圆形喷水池,在池中心竖直安装一要修建一个圆形喷水池,在池中心竖直安装一 根水管,在水管的顶端安一
4、个喷水头,使喷出的抛物线根水管,在水管的顶端安一个喷水头,使喷出的抛物线 形水柱在与池中心的水平距离为形水柱在与池中心的水平距离为 1 m 处达到最高,高度处达到最高,高度 为 3 m,水柱落地处离池中心 3 m,水管应多长? (1,3) y/m O1 2 3 x/m 3 2 1 3交点式其中其中 a0 12 ()()ya xxxx? 当抛物线与 x 轴有两个交点为(x1,0),(x2,0)时, 二次函数y=ax 2+bx+c 可以转化为交点式y=a(x-x 1)(x-x2). 因此, 当抛物线与x轴有两个交点为(x1,0),(x2,0)时, 可设函数的解析式为y=a(x-x1)(x-x 2)
5、,再把第三个点的坐 标代入其中,即可解得 a,求出抛物线的解析式。 结果必须把交点式化为一般式。 已知抛物线经过点已知抛物线经过点(-1,0),(3,0),(2,-5). 求这条抛物线的解析式。求这条抛物线的解析式。 根据下列条件,分别求出对应的二次函数的解析式:根据下列条件,分别求出对应的二次函数的解析式: 2 1 32 2 ()yx?解析式为: (1)已知二次函数的图象经过点 A(0,-1),B (1,0),C(-1,2); 解析式为:y=2x2 -x-1 (2)二次函数的图象顶点为( 3,-2),且图象 与x轴两个交点间的距离为 4; 解析式: 2 15 y = -x +2x+ 22 (
6、3)抛物线的对称轴为直线 x=2,且经过点(1,4) 和(5,0); 回 顾 与 反 思 ? 已知图象上三点或三对的对应值, 通常选择一般式 ? 已知图象的顶点坐标(对称轴和最值) 通常选择顶点式 ? 已知图象与x轴的两个交点的横坐标 x1、x2, 通常选择交点式 确定二次函数的解析式时,应该根据条件 的特点,恰当地选用一种函数表达式, 顶点式y=a(x-h) 2+k(a、h、k为常数,a0). ? 若已知抛物线的顶点坐标和抛物线上的另一个点若已知抛物线的顶点坐标和抛物线上的另一个点 的坐标时,通过设函数的解析式为顶点式 y=a(x- h)2+k. 特别地,当抛物线的顶点为原点是,特别地,当抛物线的顶点为原点是, h=0,k=0,可设函数的解析式为 y=ax 2. 当抛物线的对称轴为 y轴时,轴时,h=0,可设函数的可设函数的 解析式为y=ax 2+k. 当抛物线的顶点在 x轴上时,k=0,可设函数 的解析式为的解析式为y=a(x-h) 2. 一个二次函数的图象的对称轴为直线 x = 1, 且经过点 A(-1,0)和 B(0,2),求这个二次函数的 解析式 y=- 3 2 (x-1)+ 2 3 8 解: 根据题意得顶点为(1,4) 由条件得与x轴交点坐标 (2,0);(-4,0) 已知当x1时,抛物线最高点的纵坐标为4,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 姓名牌办公用品产品供应链分析
- 市场细分咨询行业营销策略方案
- 光学玻璃研磨行业相关项目经营管理报告
- 2024年鞍山市海城市卫健系统事业单位面向社会公开招聘工作人员50人笔试模拟试题及答案解析
- 杭州市2025届高三教学质量检测(一模) 历史试题卷(含标准答案)
- 茶艺与礼仪教育的引入计划
- 前台文员角色定位与自我认知计划
- 小班绘本阅读的魅力与技巧计划
- 2024-2025部编版语文一年级上册汉语拼音3bpmf
- 断桥铝封阳台安装免责协议书范文
- 三级安全培训考试题带答案(满分必刷)
- 五年级上册小学高年级学生读本第1讲《伟大事业始于梦想》说课稿
- 天猫购销合同范本
- 2024年纪委监委招聘笔试必背试题库500题(含答案)
- 教科版五年级上册科学期中测试卷及完整答案【易错题】
- 统编版2024年新版七年级上册历史第一单元达标测试卷(含答案)
- 钢结构防腐防火涂装工程施工方案
- 飞机仪电与飞控系统原理智慧树知到期末考试答案章节答案2024年中国人民解放军海军航空大学
- 酒店数字化运营概论 课件 1.2 网络营销与电子商务
- 钢结构工程施工(第五版) 课件 2项目二 焊接
- 电信营业厅运营方案策划书(2篇)
评论
0/150
提交评论