




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、线性代数教学大纲Lin ear Aigebra课程编号:070A1060适用专业:理工管各专业学时:40 学分:3一、内容简介内容包括:行列式,矩阵的运算,向量的线性相关性,线性方程组的基本理论及解 法,特征值与特征向量的概念与计算,矩阵的相似对角阵及用正交变换化对称矩阵为对 角阵的方法,化二次型为标准形,线性空间与线性变换。二、本课程的目的和任务线性代数是高等学校理工科和经济学科等有关专业的一门重要基础课。它不但是其 它数学课程的基础,也是各类工程及经济管理课程的基础。另外,由于计算机科学的飞 速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决,于是作 为处理离散问题的线性
2、代数,成为从事科学研究和工程设计的科技人员必备的数学基础。三、本课程与其它课程的关系本课程的先修课是高等数学中的“空间解析几何与向量代数”部分。作为基础课, 它是许多后继课,如计算方法、数理统计、运筹学以及其他专业基础课和专业课的基础。随着对教学内容的改革,本课程可以与高等数学中的某些部分结合起来讲授,如向 量代数;又可在多元函数的微分学中介绍其部分应用,如二次型的正定性。四、本课程的基本要求通过本课程的学习,要求学生熟练掌握行列式的计算,矩阵的初等变换,矩阵秩的 定义和计算,禾U用矩阵的初等变换求解方程组及逆阵,向量组的线性相关性,禾U用正交 变换化对称矩阵为对角形矩阵等有关基础知识,并具有
3、熟练的矩阵运算能力和利用矩阵 方法解决一些实际问题的能力,从而为学习后继课及进一步扩大知识面奠定必要的数学 基础。具体要求如下:n阶行列式的定义第一讲 二阶与三阶行列式、全排列及其逆序数、 目的:理解n阶行列式的定义。要求:掌握二阶、三阶行列式的计算,会求全排列的逆序数,利用定义计算简单的 行列式。第二讲对换、行列式的性质 目的:理解n阶行列式的性质。要求:掌握对换的定义和性质、用行列式的性质计算n 阶行列式。n 个方第三讲 行列式按行(列)展开、克拉默法则 目的:理解行列式按行(列)展开法则及推论、克拉默法则。 要求:掌握用行列式按行(列)展开法则计算行列式的方法,用克拉默法则讨论 程 n
4、个未知数的线性方程组有唯一解的条件及求解方法。第四讲 矩阵、矩阵的运算 目的:理解矩阵的概念,理解矩阵的加法、数乘矩阵及矩阵乘法的运算规律、理解矩阵 的转置、方阵的行列式、方阵的幂、伴随阵等概念。 要求:掌握矩阵的线性运算以及矩阵的乘法运算。第五讲 逆矩阵、矩阵分块法 目的:理解逆矩阵的概念和性质、矩阵可逆充要条件,理解矩阵的分块法及几种特殊的 分块法。要求:掌握判断矩阵是否可逆以及用伴随阵求逆阵的方法,利用逆阵解矩阵方程,对分 块阵进行运算。第六讲 矩阵的初等变换、矩阵的秩 目的:理解矩阵的初等变换、矩阵等价、矩阵秩的概念和性质。 要求:掌握用初等变换化矩阵为行阶梯矩阵、行最简形矩阵或等价标
5、准形的方法,掌握 用初等变换求矩阵秩的方法。第七讲 线性方程组的解、初等矩阵 目的:理解线性非齐次方程组有解的条件、解的个数、求解的方法,理解线性齐次方程 组有非零解的条件、求解的方法,理解初等矩阵的概念和性质。要求:掌握用初等变换求解线性方程组的方法,掌握用初等变换求逆矩阵的另一种方法。第八讲 n 维向量、向量组的线性相关性目的:理解 n 维向量的概念、理解线性组合、线性表示、线性相关、线性无关等概念。 要求:掌握有关向量组相关性的定理,会判别向量组的线性相关性。第九讲 向量组的秩 目的:理解向量组等价、向量组的秩、向量组的极大无关组等概念,理解向量组的秩与 矩阵秩的关系。要求:掌握求向量组
6、秩的方法,会证明向量组的等价。第十讲 向量空间、线性方程组解的结构目的:理解 n 维向量空间、子空间、基、维数、坐标等概念,理解齐次线性方程组基础 解系、通解、解空间等概念,理解非齐次线性方程组解的结构及通解的概念。 要求:掌握求向量空间的基、维数的方法,会求线性方程组的通解。第十一讲 向量的内积目的:理解向量的内积、长度、夹角等概念及性质,理解标准正交基、正交矩阵、正交变换的概念及性质。Schimidt )方法。要求:掌握线性无关向量组标准正交化的施密特( 第十二讲 方阵的特征值、特征向量 目的:理解方阵的特征值、特征向量的概念及性质。 要求:掌握求方阵的特征值、特征向量的方法。第十三讲 相
7、似矩阵、对称矩阵的相似矩阵 目的:理解相似矩阵的概念与性质,理解矩阵可相似对角化的充要条件,理解实对称矩 阵的特征值、特征向量的性质以及实对称矩阵一定可以相似对角化。要求:掌握用矩阵相似的定义证明两个矩阵相似的方法,会求一个正交阵使得实对称阵 化为对角阵。第十四讲 二次型及标准形、用配方法化二次型成标准形 目的:理解二次型及其矩阵表示,理解二次型的系数阵、二次型的秩及二次型的标准形 等概念。要求:掌握用正交变换将二次型化为标准形的方法以及拉格朗日配方法化二次型为标准 形的方法。第十五讲 正定二次型 目的:理解惯性定理,理解正定二次型、负定二次型、正定矩阵的概念。 要求:掌握判别二次型为正定二次
8、型的两个充要条件,并以此判断二次型及其系数阵的 正定性。* 第十六讲 线性空间的定义与性质,维数、基与坐标 目的:理解线性空间、线性运算、子空间的概念及性质,理解线性空间的基、维数、坐 标等概念。要求:掌握非空集合构成线性空间的条件,会求线性空间中的向量在给定基下的坐标。* 第十七讲 基变换、坐标变换 目的:理解基变换公式及过渡矩阵的概念 要求:掌握求过渡矩阵的方法,会利用基变换公式求向量的坐标。* 第十八讲 线性变换、线性变换的矩阵表示 目的:理解线性变换的概念及性质,理解线性变换的矩阵表示和线性变换的秩。 要求:掌握求线性变换矩阵的方法。理论教学内容 第一章12五、课程内容及学时分配 行列
9、式( 6 学时) 二阶与三阶行列式 全排列及其逆序数 n 阶行列式的定义34对换5行列式的性质6行列式按行(列)展开7克拉默法则二章矩阵及其运算( 4 学时)1矩阵2矩阵的运算3逆矩阵4矩阵分块法第第三章 矩阵的初等变换与线性方程组( 4 学时) 矩阵的初等变换 矩阵的秩 线性方程组的解 初等矩阵向量组的线性相关性( 6 学时)n 维向量向量组的线性相关性向量组的秩向量空间线性方程组的解的结构相似矩阵及二次型( 10 学时)预备知识:向量的内积方阵的特征值和特征向量相似矩阵对称矩阵的相似矩阵二次型及其标准形用配方法化二次型成标准形正定二次型线性空间与线性变换( 6 学时)线性空间的定义与性质维
10、数、基与坐标基变换与坐标变换线性变换线性变换的矩阵表示式1234第四章12345第五章1234567 *第六章12345实践教学内容从第一章起,每章安排一次习题课,共六次,每次2 学时。六、教材与参考书1、教材 线性代数第三版,同济大学数学教研室编,高教出版社,2、主要参考书线性代数 ,哈尔滨理工大学应用数学系编,哈尔滨工程大学出版社出版,1998 年 8 月出版。2002 年 2月出版。七、本课程的教学方式本课程的特点是理论性强,逻辑性强,其教学方式应注重启发式、引导式,讲授时 应注意以矩阵作为教学的主线,将其它的内容与矩阵有机联系起来。八、各教学环节学时分配早节课堂讲授习题课小计第一章628第二章426第三章42
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《财务报表分析实训课件》课件
- 2025年江苏省扬州市高邮市中考物理一模试卷(含解析)
- 《电子产品跟单销售流程》课件
- 短途行程协议
- 《GB 16174.1-2015手术植入物 有源植入式医疗器械 第1部分:安全、标记和制造商所提供信息的通 用要求》(2025版)深度解析
- 铁路市场营销市场细分的方法课件
- 云南水池补漏施工方案
- 《GB 16787-199730 MHz~1GHz 声音和电视信号的电缆分配系统辐射测量方法和限值》(2025版)深度解析
- 中国主要气象灾害
- 中医面部知识培训课件视频
- 土地流转合同补充协议书
- 七年级语文下册《登幽州台歌》课件
- 兼职劳务协议合同模板
- 2025-2030中国改性塑料市场盈利能力预测及发展机遇规模研究报告
- 2025全国国家版图知识竞赛题库及答案(300题)中小学组试题及答案
- 2025年河南机电职业学院高职单招语文2019-2024历年真题考点试卷含答案解析
- (二模)东北三省三校2025年高三第二次联合模拟考试 英语试卷(含答案解析)
- 静脉输液治疗的健康教育
- 2025-2030中国地面液压凿岩机行业市场发展趋势与前景展望战略研究报告
- 九年级英语单词表上册译林版
- 公路工程施工安全生产风险管控清单
评论
0/150
提交评论